
ConstLog: Constructive Logic

Lecture Notes on
Quantification

Frank Pfenning André Platzer

Carnegie Mellon University ‖ Karlsruhe Institute of Technology
Lecture 6

1 Introduction

In this lecture, we introduce universal and existential quantification, making the tran-
sition from purely propositional logic to first-order intuitionistic logic, which provides
ways of quantifying universally or existentially about objects. As usual, we follow the
method of using introduction and elimination rules to explain the meaning of the con-
nectives. An important aspect of the treatment of quantifiers is that it should be com-
pletely independent of the domain of quantification. We want to capture what quanti-
fiers have in common, rather than specifics for natural numbers or integers or rationals
or lists or other type of data. We will therefore quantify over objects of an unspecified
(arbitrary) type τ . Whatever we obtain, will also hold for specific domains (for exam-
ple, τ = nat). The basic judgment connecting objects t to types τ is t : τ . We will refer to
this judgment here, but not define any specific instances until later in the course when
discussing data types. What emerges as an important judgmental principle is that of a
parametric judgment and the associated substitution principle for objects.

2 Universal Quantification

First is universal quantification, written as ∀x:τ. A(x) and pronounced “for all x of type
τ , A(x)”. Here x is a bound variable and can therefore be renamed so that ∀x:τ. A(x)
and ∀y:τ. A(y) are equivalent. When we write A(x) we mean an arbitrary proposition
which may depend on x.

For the introduction rule we require that A(a) be true for an arbitrary object a of type
τ . In other words, the premise contains a parametric judgment, explained in more detail

CONSTLOG LECTURE NOTES 15.5.2023 FRANK PFENNING , ANDRÉ PLATZER

http://lfcps.org/course/constlog.html


L6.2 Quantification

below.
a : τ...

A(a) true

∀x:τ. A(x) true
∀Ia

It is important that a be a new parameter, not used outside of its scope, which is the
derivation between the new hypothesis a : τ and the conclusion A(a) true. In particu-
lar, it may not occur in ∀x:τ. A(x). The rule makes sense: A proof that A(x) holds for all
x of type τ considers any arbitrary a of type τ and shows that A(a) true. But it is impor-
tant that a was indeed arbitrary and not constrained by anything other than its type τ .
Indeed, if a were not a new parameter but would already occur in the rest of the proof,
we would incorrectly assume other properties of a. Observe that the parameter a is of
a different kind than the label for the assumption a in the implication introduction rule
⊃I , because a is a parameter for objects of type τ while u is a label of a proposition, and
in fact the rules use different judgments. As a notational reminder for this difference,
we not only use different names but also do not attach the parameter a to the rule bar.

If we think of this rule as the defining property of universal quantification, then a
verification of ∀x:τ. A(x) describes a construction by which an arbitrary a : τ can be
transformed into a proof of A(a) true. The corresponding elimination rule ∀E, thus,
accepts some term t : τ of the appropriate type and concludes that A(t) true:

∀x:τ. A(x) true t : τ

A(t) true
∀E

We must verify that t : τ so that A(t) is a well-formed proposition. The elimination rule
makes sense: ifA(x) is true for all x of type τ , and if t is a particular term of type τ , then
A(t) is true as well for this particular t of type τ .

Parametric Substitution Principle. The local reduction for local soundness of ∀ uses
the following substitution principle for parametric judgments:

If

a : τ
D
J(a) and

E
t : τ then

E
t : τ
[t/a]D
J(t)

That is, if D is a deduction deducing judgment J(a) from the judgment a : τ about pa-
rameter a, and if E is a deduction that the specific term t is of type τ , then we can sub-
stitute the term t for parameter a throughout the derivation D to obtain the derivation
on the right that no longer depends on parameter a and uses the deduction E to show
that t has the appropriate type. The right hand side is constructed by systematically
substituting t for a in D and the judgments occurring in it. As usual, this substitution
must be capture avoiding to be meaningful. In particular, a should not be replaced by t

CONSTLOG LECTURE NOTES FRANK PFENNING , ANDRÉ PLATZER



Quantification L6.3

in a context in which some part of t is bound in some scope, but such context should
instead be renamed as needed. It is the substitution into the judgments themselves which
distinguishes substitution for parameters from substitution for hypotheses. The substi-
tution into the judgments is necessary here since the propositions in the judgments in
D may still mention parameter a, which all need to be substituted to become t instead.

Local Soundness. The local reduction showing local soundness of universal quan-
tification then exploits this substitution principle to show that a direct proof ofA(t) true
can be obtained from the derivation D when substituting t for a and using derivation E
to show that t : τ .

a : τ
D

A(a) true

∀x:τ. A(x) true
∀Ia E

t : τ

A(t) true
∀E =⇒R

E
t : τ
[t/a]D
A(t) true

Local Completeness. The local expansion showing local completeness of universal
quantification introduces a fresh parameter a : τ which we can use to eliminate the
universal quantifier.

D
∀x:τ. A(x) true =⇒E

D
∀x:τ. A(x) true a : τ

A(a) true
∀E

∀x:τ. A(x) true
∀Ia

A simple example is the proof that universal quantifiers distribute over conjunction.

∀x:τ. (A(x) ∧B(x)) true
u

a : τ

A(a) ∧B(a) true
∀E

A(a) true
∧E1

∀x:τ. A(x) true
∀Ia

∀x:τ. (A(x) ∧B(x)) true
u

b : τ

A(b) ∧B(b) true
∀E

B(b) true
∧E2

∀x:τ. B(x) true
∀Ib

(∀x:τ. A(x)) ∧ (∀x:τ. B(x)) true
∧I

(∀x:τ. (A(x) ∧B(x)))⊃ (∀x:τ. A(x)) ∧ (∀x:τ. B(x)) true
⊃Iu

Note how crucial it is that the parameter a in ∀Ia is new, otherwise (the omission of
this check is marked ∀Ia?? below), the rules would unsoundly prove that a predicate
C that is reflexive (i.e., C(x, x) holds for all x) holds for all x, y, which is clearly not the

CONSTLOG LECTURE NOTES FRANK PFENNING , ANDRÉ PLATZER



L6.4 Quantification

case:

∀x:τ. C(x, x) true
u

a : τ

C(a, a) true
∀E

∀y:τ. C(a, y) true
∀Ia??

∀x:τ. ∀y:τ. C(x, y) true
∀Ia

(∀x:τ. C(x, x))⊃ (∀x:τ. ∀y:τ. C(x, y)) true
⊃Iu

3 Existential Quantification

The existential quantifier is more difficult to specify, although the introduction rule
seems innocuous enough. If there is a t of type τ for which a proof ofA(t) true succeeds,
then there is a proof of ∃x:τ. A(x) true witnessed by said t.

t : τ A(t) true

∃x:τ. A(x) true
∃I

The elimination rules cause some difficulties. We cannot write

∃x:τ. A(x) true

A(t) true
∃E?

because we do not know for which term t is is the case that A(t) holds. It is easy to see
that local soundness would fail with this rule, because we would prove ∃x:τ. A(x) with
one witness t and then eliminate the quantifier using another object t′ about which we
have no reason to believe it would satisfy A(t′) true.

The best we can do is to assume that A(a) is true for some new parameter a that, as it
is new, we do not know anything about. The scope of this assumption is limited to the
proof of some conclusion C true which does not mention a (since a must be new).

∃x:τ. A(x) true

a : τ A(a) true
u

...
C true

C true
∃Ea,u

Here, the scope of both the hypotheses a and u is the deduction on the right, indicated
by the (joint) vertical dots. In particular, C may not depend on a since a would other-
wise unsoundly escape its scope in the bottom-most conclusion.

Local Soundness. We make crucial use of this requirement of rule ∃Ea,u that C can-
not depend on a in the local reduction for local soundness to see that C is unaffected

CONSTLOG LECTURE NOTES FRANK PFENNING , ANDRÉ PLATZER



Quantification L6.5

when substituting t for a in the proof.

D
t : τ

E
A(t) true

∃x:τ. A(x) true
∃I

a : τ A(a) true
u

F
C true

C true
∃Ea,u

=⇒R

D
t : τ

E
A(t) true

u

[t/a]F
C true

The reduction requires two substitutions, one parametric substitution for the parameter
a and one ordinary substitution for the hypothesis u.

Local Completeness. Observe the similarity of ∃Ea,u to ∨Eu,v for disjunctions. In-
deed, the local expansion showing local completeness is patterned after the disjunction,
which also—somewhat surprisingly—uses the elimination rule below the introduction
rule.

D
∃x:τ. A(x) true =⇒E

D
∃x:τ. A(x) true

a : τ A(a) true
u

∃x:τ. A(x) true
∃I

∃x:τ. A(x) true
∃Ea,u

4 Example

As an example of quantifiers we show the equivalence of ∀x:τ. (A(x)⊃C) and (∃x:τ. A(x))⊃
C, where C does not depend on x. Generally, in our propositions, any possible depen-
dence on a bound variable is indicated by writing a general predicate A(x1, . . . , xn) to
indicate that the proposition A(x1, . . . , xn) may depend on the variables x1, . . . , xn. We
do not make explicit when such propositions are well-formed, although appropriate
rules for explicit A could be given.

When looking at a proof, the static representation on the page is an inadequate image
for the dynamics of proof construction. As we did earlier, we give examples where we
show the various stages of proof construction.

...
((∃x:τ. A(x))⊃ C)⊃ ∀x:τ. (A(x)⊃ C) true

The first three steps can be taken without hesitation, because we can always apply
implication and universal introduction from the bottom up without possibly missing a

CONSTLOG LECTURE NOTES FRANK PFENNING , ANDRÉ PLATZER



L6.6 Quantification

proof.

(∃x:τ. A(x))⊃ C true
u

a : τ A(a) true
w

...
C true

A(a)⊃ C true
⊃Iw

∀x:τ. A(x)⊃ C true
∀Ia

((∃x:τ. A(x))⊃ C)⊃ ∀x:τ. (A(x)⊃ C) true
⊃Iu

At this point the conclusion is atomic, so we must apply an elimination to an assump-
tion if we follow the strategy of introductions bottom-up and eliminations top-down. The
only possibility is implication elimination, since a : τ and A(a) true are atomic. This
gives us a new subgoal.

(∃x:τ. A(x))⊃ C true
u

a : τ A(a) true
w

...
∃x:τ. A(x)

C true
⊃E

A(a)⊃ C true
⊃Iw

∀x:τ. A(x)⊃ C true
∀Ia

((∃x:τ. A(x))⊃ C)⊃ ∀x:τ. (A(x)⊃ C) true
⊃Iu

At this point it is easy to see how to complete the proof with an existential introduction.

(∃x:τ. A(x))⊃ C true
u

a : τ A(a) true
w

∃x:τ. A(x)
∃I

C true
⊃E

A(a)⊃ C true
⊃Iw

∀x:τ. A(x)⊃ C true
∀Ia

((∃x:τ. A(x))⊃ C)⊃ ∀x:τ. (A(x)⊃ C) true
⊃Iu

We now consider the reverse implication.

...
(∀x:τ. (A(x)⊃ C))⊃ ((∃x:τ. A(x))⊃ C) true

From the initial goal, we can blindly carry out two implication introductions, bottom-

CONSTLOG LECTURE NOTES FRANK PFENNING , ANDRÉ PLATZER



Quantification L6.7

up, which yields the following situation.

∃x:τ. A(x) true
w
∀x:τ. A(x)⊃ C true

u

...
C true

(∃x:τ. A(x))⊃ C true
⊃Iw

(∀x:τ. (A(x)⊃ C))⊃ ((∃x:τ. A(x))⊃ C) true
⊃Iu

Since C is atomic, we now only have two choices: existential elimination applied to w
or universal elimination applied to u. However, we have not introduced any terms, so
only the existential elimination can go forward.

∃x:τ. A(x) true
w

∀x:τ. A(x)⊃ C true
u

a : τ A(a) true
v

...
C true

C true
∃Ea,v

(∃x:τ. A(x))⊃ C true
⊃Iw

(∀x:τ. (A(x)⊃ C))⊃ ((∃x:τ. A(x))⊃ C) true
⊃Iu

At this point we need to apply another elimination rule to an assumption. We don’t
have much to work with, so we try universal elimination.

∃x:τ. A(x) true
w

∀x:τ. A(x)⊃ C true
u

a : τ

A(a)⊃ C true
∀E

A(a) true
v

...
C true

C true
∃Ea,v

(∃x:τ. A(x))⊃ C true
⊃Iw

(∀x:τ. (A(x)⊃ C))⊃ ((∃x:τ. A(x))⊃ C) true
⊃Iu

Now we can fill the gap with an implication elimination.

∃x:τ. A(x) true
w

∀x:τ. A(x)⊃ C true
u

a : τ

A(a)⊃ C true
∀E

A(a) true
v

C true
⊃E

C true
∃Ea,v

(∃x:τ. A(x))⊃ C true
⊃Iw

(∀x:τ. (A(x)⊃ C))⊃ ((∃x:τ. A(x))⊃ C) true
⊃Iu

CONSTLOG LECTURE NOTES FRANK PFENNING , ANDRÉ PLATZER



L6.8 Quantification

Note again how crucial it is that the parameter a is actually new and does not occur
in the conclusion C, otherwise we could unsoundly prove:

∃x:τ. C(x) true
u

a : τ C(a) true
w

C(a) true
∃Ea,w??

(∃x:τ. C(x))⊃ C(a) true
⊃Iu

5 Verifications and Uses

In order to formalize the proof search strategy, we use the judgments thatA has a verifi-
cation (A ↑) and thatAmay be used (A ↓) as we did in the propositional case. Universal
quantification is straightforward:

a : τ...
A(a) ↑

∀x:τ. A(x) ↑
∀Ia

∀x:τ. A(x) ↓ t : τ

A(t) ↓
∀E

We do not assign a direction to the judgment for typing objects, t : τ . For unspecified
types τ , they have no introduction or elimination rules anyhow, so that a distinction
between verifications and uses is superfluous.

Verifications for the existential elimination are patterned after the disjunction: we
translate a usable ∃x:τ. A(x) into a usable A(a) with a limited scope, both in the verifi-
cation of some C that the conclusion was already interested in verifying.

t : τ A(t) ↑

∃x:τ. A(x) ↑
∃I

∃x:τ. A(x) ↓

a : τ A(a) ↓
u

...
C ↑

C ↑
∃Ea,u

As before, the fact that every true proposition has a verification is a kind of global
version of the local soundness and completeness properties. If we take this for granted
(since we do not prove it until later), then we can use this to demonstrate that certain
propositions are not true, parametrically.

For example, we show that (∃x:τ. A(x)) ⊃ (∀x:τ. A(x)) is not true in general. After
the first two steps of constructing a verification, we arrive at

∃x:τ. A(x) ↓
u

a : τ
...

A(a) ↑

∀x:τ. A(x) ↑
∀Ia

(∃x:τ. A(x))⊃ (∀x:τ. A(x)) ↑
⊃Iu

CONSTLOG LECTURE NOTES FRANK PFENNING , ANDRÉ PLATZER



Quantification L6.9

At this point we can only apply existential elimination, which leads to

∃x:τ. A(x) ↓
u

b : τ A(b) ↓
v

a : τ
...

A(a) ↑

A(a) ↑ ∃Eb,v

∀x:τ. A(x) ↑
∀Ia

(∃x:τ. A(x))⊃ (∀x:τ. A(x)) ↑
⊃Iu

We cannot close the gap, because a and b are different parameters. We can only apply
existential elimination to assumption u again. But this only creates c : τ and A(c) ↓
for some new c, so have made no progress. No matter how often we apply existential
elimination, since the parameter introduced must be new, we can never prove A(a).

Observe that this proof of nonprovability critically leveraged verifications and uses,
because only then do we even have a finite search space of proofs to exhaust (yet still
need an argument for the cycle of repeated ∃E elimination). General natural deduction
proof attempts for (∃x:τ. A(x))⊃ (∀x:τ. A(x)) could have been arbitrarily big.

6 Proof Terms

Going back to the very first lecture, we think of an intuitionistic proof of ∀x:τ.∃y:σ.A(x, y)
as exhibiting a function that, for every x:τ constructs a witness y:σ and a proof that
A(x, y) is true.

So the proof term for a universal quantifier should be a function and for an existential
quantifier a pair consisting of a witness and a proof that the witness is correct.

We do not invent new notation, but reuse the notation for functions and applications.

a : τ
...

M : A(a)

(fn a⇒M) : ∀x:τ.A(x)
∀Ia

M : ∀x:τ.A(x) t : τ

M t : A(t)
∀E

Note that the proof term M can, of course, depend on a, but, as usual, we explicitly
mark dependency only in propositions. The local reduction and expansions straight-
forwardly adapt the previous rules for functions.

(fn a⇒M) t =⇒R [t/a]M

M : ∀x:τ.A(x) =⇒E (fn a⇒M a) for a not in M

You should be able to correlate these reductions with the local reductions and expan-
sions on harmony proofs given earlier in this lecture.

CONSTLOG LECTURE NOTES FRANK PFENNING , ANDRÉ PLATZER



L6.10 Quantification

For existential introduction the proof term is a pair, but the existential elimination is
an interesting case because it does not just extract the first and second component of
this pair. Instead, we have a new form that simultaneously names both components of
the pair with a let, following the shape of the elimination rule.

t : τ M : A(t)

(t,M) : ∃x:τ.A(x)
∃I

M : ∃x:τ.A(x)

a : τ u : A(a)
u

...
N : C

(let (a, u) =M inN) : C
∃Ea,u

The local reduction decomposes the pair as expected. The local expansion decom-
poses a given proof term justifying ∃x:τ.A(x), decomposes it and then puts it back
together.

let (a, u) = (t,M) inN =⇒R [M/u][t/a]N

M : ∃x:τ.A(x) =⇒E let (a, u) =M in (a, u)

7 Rule Summary

a : τ...
A(a) true

∀x:τ. A(x) true
∀Ia

∀x:τ. A(x) true t : τ

A(t) true
∀E

t : τ A(t) true

∃x:τ. A(x) true
∃I

∃x:τ. A(x) true

a : τ A(a) true
u

...
C true

C true
∃Ea,u

CONSTLOG LECTURE NOTES FRANK PFENNING , ANDRÉ PLATZER


	Introduction
	Universal Quantification
	Existential Quantification
	Example
	Verifications and Uses
	Proof Terms
	Rule Summary

