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1 Introduction

In the verificationist definition of the logical connectives via their introduction rules we
have briefly but informally justified the elimination rules. In this lecture, we study the
balance between introduction and elimination rules more closely. Clearly, the elimina-
tion rules of a connective have to fit exactly, like hand in glove, to the introduction rules
of the connective. In classical logic, the meaning of connectives is given by their seman-
tics, which makes it easy to justify the correctness of all proof rules by showing they fit
to the semantics. But in the verificationist definition, the introduction rules themselves
are used as the definitions, which makes them unjustifiable. Fortunately, the elimination
rules can still be justified in that they have to fit to the introduction rules.

We elaborate on the verificationist point of view that logical connectives are defined
by their introduction rules. We show that for intuitionistic logic as presented so far, the
elimination rules are in harmony with the introduction rules in the sense that they are
neither too strong nor too weak. Elimination rules can regain all information provided to
the introduction rules, but no more. We demonstrate this via local reductions and expan-
sions, respectively, which relate to computational reductions from proofs-as-programs.
This lecture is a fundamental cornerstone to the verificationist tradition.

2 Local Soundness and Local Completeness

To show that introduction and elimination rules are in harmony we establish local
soundness and local completeness.
Local soundness shows that the elimination rules are not too strong: no matter how we
apply elimination rules to the result of an introduction we cannot gain any new information
(that wasn’t originally present at the introduction). We demonstrate this by showing
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L4.2 Harmony

that we can find a more direct proof of the conclusion of an elimination than one that
first introduces and then eliminates the connective in question. This is witnessed by a
local reduction of the given introduction and the subsequent elimination.
Local completeness shows that elimination rules are not too weak: there is always a way
to apply elimination rules to reconstitute a proof of the original proposition from the results of
the elimination rules by applying introduction rules. This is witnessed by a local expansion
of an arbitrary given derivation into one that reproves the primary connective.

Connectives whose introduction and elimination rules are in harmony in the sense
that they are locally sound and complete are properly defined from the verificationist
perspective. If not, the proposed connective should be viewed with suspicion. Another
criterion we would like to apply uniformly is that both introduction and elimination
rules do not refer to other propositional constants or connectives (besides the one we
are trying to define), which could create a dangerous dependency of the various connec-
tives on each other. For well-definedness, it is particularly important that connectives
are defined in terms of simpler things (you also would not define a recursive function
f(x) as the more complex f(x + 1) because that would not terminate). As we present
correct definitions we will occasionally also give some counterexamples to illustrate the
consequences of violating the principles behind the patterns of harmonious inference.

When discussing each individual connective below we use the notation

D
A true =⇒R

D′

A true

for the local reduction of a deduction D to another deduction D′ of the same judgment
A true. In fact, =⇒R is a higher-level judgment relating two proofs, D and D′, although
we will not exploit this point of view. Similarly, the local expansion notation of D to D′:

D
A true =⇒E

D′

A true

Local reductions and local expansions are transformations on constructive proofs.

Conjunction. We start with local soundness, i.e., locally reducing an elimination of
a conjunction that was just introduced. Since conjunctions have two elimination rules
and one introduction, we have two cases to consider, because there are two different
elimination rules ∧E1 and ∧E2 that could follow the ∧I introduction rule. In either
case, we can easily reduce.

D
A true

E
B true

A ∧B true
∧I

A true
∧E1 =⇒R

D
A true

D
A true

E
B true

A ∧B true
∧I

B true
∧E2 =⇒R

E
B true

These two reductions justify that, after we proved a conjunction A∧B to be true by the
introduction rule ∧I from a proof D of A true and a proof E of B true, the only thing we
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Harmony L4.3

can get back out by any of its elimination rules is something that we have originally put
into the proof of A ∧ B true. This makes ∧E1 and ∧E2 locally sound, because the only
thing we get out is A true which already has the direct proof D as well as B true which
has a direct proof E . The above two reductions make ∧E1 and ∧E2 locally sound.

Local completeness establishes that we are not losing information from the elimina-
tion rules. Local completeness requires us to apply eliminations to an arbitrary proof
D of A ∧B true in such a way that we can reconstitute a proof of A ∧B solely from the
results obtained by the eliminations.

D
A ∧B true =⇒E

D
A ∧B true
A true

∧E1

D
A ∧B true
B true

∧E2

A ∧B true
∧I

This local expansion shows that, collectively, the elimination rules ∧E1 and ∧E2 extract
all information from the judgment A ∧B true that is needed to reprove A ∧B true with
the introduction rule ∧I . Remember that the hypothesis A∧B true, once available, can
be used multiple times, which is apparent in the local expansion, because the expansion
simply repeats the same proof D of A ∧B true on the left and on the right premise.

As an example where local completeness fails, consider the case where we “forget”
the second/right elimination rule ∧E2 for conjunction. The remaining rule is still lo-
cally sound, because it proves something that was put into the proof of A ∧B true, but
not locally complete because we can no longer extract a proof of B from the assumption
A ∧B. Now, for example, we cannot prove (A ∧B)⊃ (B ∧A) even though this should
clearly be true.

Substitution Principle. We need the defining property for hypothetical judgments
before we can discuss implication. Intuitively, we can always substitute a deduction of
A true for any use of a hypothesis A true, because every deduction of A true justifies the
hypothesis A true. In order to avoid ambiguity, we make sure assumptions are labelled
and we substitute simultaneously for all uses of an assumption with a given label. We
can only substitute for assumptions that are not already discharged (e.g., by⊃Iu) in the
subproof we are considering. The substitution principle then reads as follows:

If

A true
u

E
B true

is a hypothetical proof of B true under the undischarged hypothesis A true
labelled u (especially, no ⊃Iu appears in E), and

D
A true
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L4.4 Harmony

is a proof of A true then
D

A true
u

E
B true

is our notation for substituting deduction D for all uses of the hypothesis
labelled u in the deduction E . This deduction, also written in linear notation
as [D/u]E no longer depends on assumption u.

Implication. To witness local soundness, we reduce an implication introduction fol-
lowed by an elimination using the substitution operation.

A true
u

E
B true

A⊃B true
⊃Iu D

A true
B true

⊃E =⇒R

D
A true

u

E
B true

This reduction plugs in the deductionD of A true in for the assumption A true labelled u
in the deduction E that proved B true. The conditions on the substitution operation are
satisfied, because label u was just introduced at the ⊃Iu inference and therefore cannot
be discharged in E itself, since labels introduced during a proof are always fresh.

Local completeness is witnessed by the following expansion.

D
A⊃B true =⇒E

D
A⊃B true A true

u

B true
⊃E

A⊃B true
⊃Iu

Here label u must be chosen fresh: it only labels the new hypothesis A true which
is used only once. This local expansion reconstitutes a proof of A ⊃ B true (using
the hypothesis u introduced by ⊃Iu) from the conclusion B true obtained from the
deduction D of A⊃B true by elimination ⊃E.

Disjunction. For disjunctions we also employ the substitution principle because the
two cases we consider in the elimination rule introduce hypotheses. In order to show
local soundness we have two possibilities for the introduction rule, in both situations
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followed by the only elimination rule.

D
A true

A ∨B true
∨IL

A true
u

E
C true

B true
w

F
C true

C true
∨Eu,w

=⇒R

D
A true

u

E
C true

D
B true

A ∨B true
∨IR

A true
u

E
C true

B true
w

F
C true

C true
∨Eu,w

=⇒R

D
B true

w

F
C true

An example of a rule that would not be locally sound is

A ∨B true
A true

∨E1?

and, indeed, we would not be able to reduce

B true
A ∨B true

∨IR

A true
∨E1?

In fact we can now derive a contradiction from no assumption, which means the whole
system is incorrect, violating the fundamental principle that ⊥ true has no proof.

⊤ true
⊤I

⊥ ∨⊤ true
∨IR

⊥ true
∨E1?

Local completeness of disjunction distinguishes cases on the known judgment A ∨
B true, using the common A ∨B true as the conclusion of the elimination ∨Eu,w.

D
A ∨B true =⇒E

D
A ∨B true

A true
u

A ∨B true
∨IL

B true
w

A ∨B true
∨IR

A ∨B true
∨Eu,w

Visually, this looks somewhat different from the local expansions for conjunction or im-
plication. It looks like the elimination rule is applied last, rather than first. Mostly, this
is due to the two-dimensional notation of natural deduction: the above represents the
step from using the knowledge of A∨B true and eliminating it to obtain the hypotheses
A true and B true in the two cases.
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Truth. The constant ⊤ only has an introduction rule, but no elimination rule. Conse-
quently, there are no cases to check for local soundness: any introduction followed by
any elimination can be reduced, simply because ⊤ has no elimination rules at all.

However, local completeness still yields a local expansion: Any proofD of⊤ true can
be trivially converted to one by the introduction rule ⊤I without even using D.

D
⊤ true =⇒E ⊤ true

⊤I

Falsehood. As for truth, there is no local reduction for ⊥, because local soundness is
trivially satisfied since we have no introduction rule.

Local completeness is slightly tricky. Literally, we have to show that there is a way
to apply an elimination rule to any proof of ⊥ true so that we can reintroduce a proof
of ⊥ true from the result. However, there will be zero cases to consider, so we apply no
introductions. Nevertheless, the following is the right local expansion.

D
⊥ true =⇒E

D
⊥ true
⊥ true

⊥E

Reasoning about situations where falsehood is true may seem vacuous, but is com-
mon in practice because it corresponds to reaching a contradiction. In intuitionistic
reasoning, this occurs when we prove A ⊃ ⊥ which is often abbreviated as ¬A, as a
construction turning a (hypothetical) proof of A into a proof of ⊥, which, after all, can-
not have a proof except from counterfactual assumptions. In classical logic reasoning it is
even more frequent, due to the rule of proof by contradiction that classically concludes
A from having led the extra assumption ¬A to a contradiction.

3 Revisiting Proof Terms

Now that all the proof rules of intuitionistic propositional logic for the truth judgment
are shown harmonious, the next question would be to show that all the proof rules for
the proof term rules are also harmonious. Notice how the pattern of elimination rules
applied to the result of an introduction rule is like the pattern of a destructor applied
to a constructor, as pursued in the proof term reductions of the Proofs-as-Programs lec-
ture. Specifically, in that lecture, eliminations (destructors) applied to the result of in-
troductions (constructor) give rise to computation in the form of a reduction. We invite
you to go back and verify that these computational reductions are exactly the witnesses
of the local reductions on proofs shown in this lecture! In other words, computational
reductions on proof terms witness local soundness of the rules! Proof term reductions are the
computational interpretation of local soundness proofs.

What about local completeness? It turns out that the local expansions are less relevant
to computation. What they tell us, however, is that if we need to return a pair from a
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Harmony L4.7

function, we can always construct it explicitly as a pair ⟨M,N⟩ for some M and N .
Indeed, any proof term O for which O : A ∧ B holds can be explicitly turned into
the pair ⟨fstO, sndO⟩. Another example would be that whenever we need to return a
function, we can always construct it as a function abstraction fnu⇒M for some M .

We can derive what the local expansion must be by annotating the deductions wit-
nessing local expansions on proofs from this lecture with proof terms. We leave this as
an exercise to the reader. The left-hand side of each expansion has the form M : A,
where M is an arbitrary term and A is a logical connective or constant applied to arbi-
trary propositions. On the right hand side we have to apply a destructor to M and then
reconstruct a term of the original type. The resulting expansion rules are in Figure 1.

M : A ∧B =⇒E ⟨fstM, sndM⟩
M : A⊃B =⇒E fnu:A⇒M u for u not free in M
M : ⊤ =⇒E ⟨ ⟩
M : A ∨B =⇒E caseM of inlu⇒ inlB u | inrw ⇒ inrAw
M : ⊥ =⇒E abort⊥M

Figure 1: Proof term expansions

4 Logical Equivalence as a Connective

As another example we would now like to define a new connective, develop introduc-
tion and elimination rules, and check their local soundness and completeness (if they
hold). First, the proposed introduction rule to define the connective:

A true
u

...
B true

B true
w

...
A true

A ≡ B true
≡Iu,w

This suggests the two eliminations rules below. If we omitted one of them, we would
expect the eliminations not to be locally complete.

A ≡ B true A true
B true

≡E1
A ≡ B true B true

A true
≡E2
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There is one introduction and two eliminations, so we have to check two cases for local
soundness. The first case:

A true
u

D
B true

B true
w

E
A true

A ≡ B true
≡Iu,w F

A true
B true

≡E1 =⇒R

F
A true

u

D
B true

We see that B true is justified, because the proof D ends in B true and its hypothesis is
proved by F . The other reduction is entirely symmetric.

A true
u

D
B true

B true
w

E
A true

A ≡ B true
≡Iu,w F

B true
A true

≡E2 =⇒R

F
B true

w

D
A true

The local expansion will exhibit the necessity of both elimination rules. You should go
through this and construct it in stages—the final result of expansion may otherwise be
a bit hard to understand.

D
A ≡ B true =⇒E

D
A ≡ B true A true

u

B true
≡E1

D
A ≡ B true B true

w

A true
≡E2

A ≡ B true
≡Iu,w

At this point we know that, logically, the equivalence connective makes sense: it is both
locally sound and complete.

Next, we should carry out a proof term assignment and re-express local reduction
and expansions on proof terms. The local reduction should give us a rule of computa-
tion; the local expansion an extensional equality principle. The mnemonic for the proof
terms for the elimination rules are congruence rules from left to right (

−→
C ) or from right

to left (
←−
C ), respectively.

u : A
u

...
N : B

w : B
w

...
M : A

Lu⇒ N,w ⇒MM : A ≡ B
≡Iu,w

M : A ≡ B N : A
−→
C M N : B

≡E1
M : A ≡ B N : B
←−
C M N : A

≡E2
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We can now annotate the local reductions and expansion with proof terms and read off:

−→
C Lu⇒ N,w ⇒MM P =⇒R [P/u]N
←−
C Lu⇒ N,w ⇒MM P =⇒R [P/w]M

M : A ≡ B =⇒E Lu⇒
−→
C M u,w ⇒

←−
C N wM

Introducing new syntax for new connectives and programs can be tedious and diffi-
cult to use. Therefore, in practice, we probably wouldn’t define logical equivalence as
a new primitive, but instead use notational definition:

A ≡ B ≜ (A⊃B) ∧ (B ⊃A)

whose meaning as a type is a pair of functions between the types A and B.

5 Summary of Judgments

M : A =⇒E M ′ proof term M for proposition A expands to M ′, see Figure 1
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