
ConstLog: Constructive Logic

Lecture Notes on
Proofs as Programs

Frank Pfenning André Platzer

Carnegie Mellon University ∥ Karlsruhe Institute of Technology
Lecture 3

1 Introduction

In this lecture we directly exploit the constructive nature of proofs in constructive logic.
A constructive proof is describing a construction, i.e., an algorithm. We investigate
a computational interpretation of constructive proofs and relate it to functional pro-
gramming. On the propositional fragment of logic this is called the Curry-Howard
isomorphism [How80]. From the very outset of the development of constructive logic
and mathematics, a central idea has been that proofs ought to represent constructions. The
Curry-Howard isomorphism is only a particularly poignant and beautiful realization of
this idea. In a highly influential subsequent paper, Per Martin-Löf [ML80] developed it
further into a more expressive calculus called type theory. This view is characterized by
the basic observations that propositions correspond to types and (constructive) proofs
correspond to (functional) programs. We will also operationalize this correspondence
to obtain a view of computation on (constructive) proofs. Since if proofs are programs,
one should be able to execute a proof.

2 Propositions as Types

Illustrating the relationship between proofs and programs uses a new judgment:

M : A M is a proof term for proposition A

We presuppose that A is a proposition when we write this judgment. We will also
dually interpret M : A as “M is a program of type A”. These dual interpretations of the
same judgment are the core of the Curry-Howard isomorphism. We either think of M
as a syntactic term that represents the proof of A true, or we think of A as the type of

CONSTLOG LECTURE NOTES 22.4.2024 FRANK PFENNING , ANDRÉ PLATZER

http://lfcps.org/course/constlog.html


L3.2 Proofs as Programs

the (functional) program M . As we discuss each connective, we give both readings of
the rules to emphasize the analogy.

The judgments A true and M : A should be interrelated. We intend that if M : A
then A true. That is the proof term calculus is sound with respect to the true judgment,
because M : A only if also A true. Conversely, if A true, then M : A for some appro-
priate proof term M . But we want something more, because the proof term in M : A
should not just witness the existence of a proof of A true but directly characterize the
specific proof. Every deduction of M : A should directly correspond to a deduction of
A true with an identical structure and vice versa. In order to make that happen we use
the same inference rules of natural deduction but annotate them with (unique) proof
terms. The property above should then be obvious. Since proof terms uniquely iden-
tify which proof rule needs to be used to prove them, the proof term M of M : A will
correspond directly to the corresponding proof of A true.

Conjunction. Constructively, we think of a proof of A∧B true as a pair of proofs: one
for A true and one for B true. So if M is a proof of A and N is a proof of B, then the pair
⟨M,N⟩ of proofs M and N is a proof of A ∧B.

M : A N : B

⟨M,N⟩ : A ∧B
∧I

The elimination rules correspond to the projections from a pair to its first and second
elements to get the individual proofs of A and of B, respectively, back out from a pair
M that is a proof of the conjunction A ∧B.

M : A ∧B

fstM : A
∧E1

M : A ∧B

sndM : B
∧E2

Hence the conjunction proposition A ∧ B corresponds to the product type A × B. And,
indeed, product types in functional programming languages have the same property
that conjunction propositions A ∧ B have. Constructing a pair ⟨M,N⟩ of type A × B
requires a program M of type A and a program N of type B (as in rule ∧I). Given a
pair M of type A × B, its first component of type A can be retrieved by the projection
fstM (as in ∧E1), its second component of type B by the projection sndM (as in ∧E2).

Truth. Constructively, we think of a proof of ⊤ true as a unit element that carries no
information.

⟨ ⟩ : ⊤
⊤I

Hence ⊤ corresponds to the unit type 1 with exactly one element. There is no elimination
rule and hence no further proof term constructs for truth. Indeed, we have not put any
information into ⟨ ⟩ when constructing it via ⊤I , so cannot expect to get any information
back out when trying to eliminate it. Dually, no information can be read off from the
only element of unit type 1.

CONSTLOG LECTURE NOTES FRANK PFENNING , ANDRÉ PLATZER



Proofs as Programs L3.3

Implication. Constructively, we think of a proof of implication A⊃B true as a function
which transforms a proof of A true into a proof of B true.

In mathematics and many programming languages, we define a function f of a vari-
able x by writing f(x) = . . . where the right-hand side “. . .” depends on x. For example,
we might write f(x) = x2 + x − 1. In functional programming, we can instead write
f = λx. x2 + x − 1, that is, we explicitly form a functional object by λ-abstraction of a
variable (x, in the example).

In the concrete syntax of Standard ML-like programming languages, λx. M is written
as fnx ⇒ M . We will try to mostly use the concrete SML syntax, but we may slip up
occasionally and write the synonymous λ-notation due to Alonzo Church instead.

Since the constructive proof of A ⊃ B true is a function, we now use the notation
of λ-abstraction to annotate the rule of implication introduction with proof terms. In
the official syntax, we label the abstraction with a proposition (writing λu:A or fnx:A,
respectively) in order to specify the domain of a function unambiguously. In practice
we will often omit the proposition label to make expressions shorter—usually (but not
always!) it can be determined from the context.

u : A
u

...
M : B

fnu ⇒ M : A⊃B
⊃Iu

The hypothesis label u acts as a variable, and any use of the hypothesis labeled u in the
proof of B corresponds to an occurrence of u in proof term M . Notice how a construc-
tive proof of B true from the additional assumption A true to establish A ⊃ B true also
describes the transformation of a proof of A true to a proof of B true. But the proof term
fnu ⇒ M explicitly represents this transformation syntactically as a function, instead
of leaving this construction implicit by inspection of whatever the proof happens to do.

As a concrete example, consider the (admittedly trivial) proof of A⊃A true:

A true
u

A⊃A true
⊃Iu

If we annotate the deduction with proof terms, we obtain

u : A
u

(fnu ⇒ u) : A⊃A
⊃Iu

So our proof corresponds to the identity function id at type A which simply returns its
argument. It can be defined as id(u) = u or as id = (fnu ⇒ u) (alias id = (λu. u)).

Constructively, a proof of A ⊃ B true is a function transforming a proof of A true to
a proof of B true. Using A ⊃ B true by its elimination rule ⊃E, thus, corresponds to

CONSTLOG LECTURE NOTES FRANK PFENNING , ANDRÉ PLATZER



L3.4 Proofs as Programs

providing the proof of A true that A ⊃ B true is waiting for to obtain a proof of B true.
The rule for implication elimination corresponds to function application. Following
the convention in functional programming, we write M N for the application of the
function M to argument N , rather than the more verbose M(N) with parentheses.

M : A⊃B N : A

M N : B
⊃E

What is the meaning of A⊃B as a type? From the discussion above it should be clear
that it can be interpreted as a function type A → B. The introduction and elimination
rules for implication can also be viewed as formation rules for functional abstraction
fnu ⇒ M and function application M N . Forming a functional abstraction fnu ⇒ M
corresponds to a function that accepts input parameter u of type A and produces M of
type B (as in ⊃I). Using a function M : A→B corresponds to applying it to a concrete
input argument N of type A to obtain an output M N of type B.

Note that we obtain the usual introduction and elimination rules for implication if
we erase the proof terms. This will continue to be true for all rules in the remainder
of this section and is immediate evidence for the soundness of the proof term calculus,
that is, if M : A then A true.

As a second example we consider a proof of (A ∧B)⊃ (B ∧A) true.

A ∧B true
u

B true
∧E2

A ∧B true
u

A true
∧E1

B ∧A true
∧I

(A ∧B)⊃ (B ∧A) true
⊃Iu

When we annotate this derivation with proof terms, we obtain the swap function which
takes a pair ⟨M,N⟩ and returns the reverse pair ⟨N,M⟩.

u : A ∧B
u

sndu : B
∧E2

u : A ∧B
u

fstu : A
∧E1

⟨sndu, fstu⟩ : B ∧A
∧I

(fnu ⇒ ⟨sndu, fstu⟩) : (A ∧B)⊃ (B ∧A)
⊃Iu

Disjunction. Constructively, we think of a proof of A ∨ B true as either a proof of
A true or a proof of B true. Disjunction therefore corresponds to a disjoint sum type A+B
that either store something of type A or something of type B. The two introduction
rules correspond to the left and right injection into a sum type.

M : A

inlM : A ∨B
∨I1

N : B

inrN : A ∨B
∨I2

In the official syntax, we annotate the injections inlB and inrA with propositions B and
A, so that a (valid) proof term has an unambiguous type instead of just being embedded
into an implicit context. In writing actual programs we usually omit this annotation.

CONSTLOG LECTURE NOTES FRANK PFENNING , ANDRÉ PLATZER



Proofs as Programs L3.5

When using a disjunction A ∨ B true in a proof, we need to be prepared to handle
A true as well as B true, because we don’t know whether ∨I1 or ∨I2 was used to prove
it. The elimination rule corresponds to a case construct discriminating between a left
and right injection into a sum type.

M : A ∨B

u : A
u

...
N : C

w : B
w

...
O : C

caseM of inlu ⇒ N | inrw ⇒ O : C
∨Eu,w

Recall that, importantly, the hypothesis labeled u is available only in the proof of the sec-
ond premise and the hypothesis labeled w only in the proof of the third premise. Hence,
the scope of the variable u is N , while the scope of the variable w is O. Computation-
ally, different programs N and O with different local variables u and w, respectively,
are used depending on the injection that M used to construct something of type A+B,
but both N and O have to produce an output of common type C in either case.

Falsehood. There is no introduction rule for falsehood (⊥). We can therefore view it
as the empty type 0 that is not inhabited. The corresponding elimination rule allows a
term of ⊥ to stand for an expression of any type when wrapped with abort. However,
there is no computation rule for it, which means during computation of a valid program
we will never try to evaluate a term of the form abortM .

M : ⊥
abortM : C

⊥E

While abortM seemingly produces a C out of nowhere, recall that it first requires a term
M of the empty type ⊥ as argument, which, after all, is not inhabited. An annotation C
as in abortC M which disambiguates the type of abortM will often be omitted, because
it can be read off from M .

Interaction Laws. This completes our assignment of proof terms to the logical infer-
ence rules. Now we can reinterpret logical interaction laws as programming exercises.
Consider the following distributivity law:

(L11a) (A⊃ (B ∧ C))⊃ (A⊃B) ∧ (A⊃ C) true
Interpreted constructively, this assignment can be read as:

Write a function which, when given a function from A to pairs of type B∧C,
returns two functions: one which maps A to B and one which maps A to C.

This is satisfied by the following function:

fnu ⇒ ⟨(fnw ⇒ fst (uw)), (fn v ⇒ snd (u v))⟩

CONSTLOG LECTURE NOTES FRANK PFENNING , ANDRÉ PLATZER



L3.6 Proofs as Programs

The following deduction provides the evidence for this function by directly following
the proof term (using the rule belonging to the respective top-level proof term):

u : A⊃ (B ∧ C)
u

w : A
w

uw : B ∧ C
⊃E

fst (uw) : B
∧E1

fnw ⇒ fst (uw) : A⊃B
⊃Iw

u : A⊃ (B ∧ C)
u

v : A
v

u v : B ∧ C
⊃E

snd (u v) : C
∧E2

fn v ⇒ snd (u v) : A⊃ C
⊃Iv

⟨(fnw ⇒ fst (uw)), (fn v ⇒ snd (u v))⟩ : (A⊃B) ∧ (A⊃ C)
∧I

fnu ⇒ ⟨(fnw ⇒ fst (uw)), (fn v ⇒ snd (u v))⟩ : (A⊃ (B ∧ C))⊃ ((A⊃B) ∧ (A⊃ C))
⊃Iu

The brilliant part about programs in constructive propositional logic work for any
types (so A,B,C above) is that they are truly foundational and work for any types.
But being propositional, they are also somewhat uninteresting in that they do not ma-
nipulate basic data types such as natural numbers, integers, lists, trees, etc. other than
passing data around. We introduce such data types later in this course, following the
same method we have used in the development of logic.

Summary. To close this section we recall the guiding principles behind the assignment of
proof terms to deductions.

1. Soundness: For every deduction of M : A there is a deduction of A true

2. Completeness: For every deduction of A true there is a proof term M and deduction
of M : A.

3. The correspondence between proof terms M and deductions of A true is a bijec-
tion. In particular, proof term M uniquely characterizes the deduction.

Furthermore, the names of the proof terms are chosen to unambiguously identify the
proof rule while also being a mnemonic reminder of the corresponding functional pro-
gramming principle.

3 Reduction

In the preceding section, we have introduced the assignment of proof terms to natural
deductions. If proofs are programs then we need to explain how proofs are executed,
and which results may be returned by a computation.

We explain the operational interpretation of proofs in two steps. In the first step we
introduce a judgment of reduction written M =⇒R M ′ and read “M reduces to M ′”.
In the second step, a computation then proceeds by a sequence of reductions M =⇒R

M1 =⇒R M2 . . ., according to a fixed strategy, until we reach a value which cannot
be reduced anymore and is the result of the computation. In this section we cover
reduction; we may return to reduction strategies in a later lecture.

CONSTLOG LECTURE NOTES FRANK PFENNING , ANDRÉ PLATZER



Proofs as Programs L3.7

As in the development of propositional logic, we discuss each of the connectives
separately, taking care to make sure the explanations are independent. This means we
can consider various sublanguages and we can later extend our logic or programming
language without invalidating the results from this section. Furthermore, it greatly
simplifies the analysis of properties of the reduction rules.

In general, we think of the proof terms corresponding to the introduction rules as
the constructors because they construct compound terms out of smaller terms. And
we think of the proof terms corresponding to the elimination rules as the destructors,
because they decompose proof terms into their pieces. With this perspective, it is in-
sightful to investigate what happens when a destructor is applied to its corresponding
constructor, because that decomposes a proof term that was just constructed with its
corresponding constructor out of its constituent proof terms.

Conjunction. The constructor for conjunction A ∧ B forms a pair ⟨M,N⟩, while the
destructors are the left and right projections. Taking the first projection of a pair, so
fst ⟨M,N⟩, exactly results in the first element M . This is captured by reduction rules
prescribing the actions of the projections:

fst ⟨M,N⟩ =⇒R M
snd ⟨M,N⟩ =⇒R N

Indeed, we can not just state but even justify these reduction rules by investigating what
the proof term proof rules do when constructing the proof term fst ⟨M,N⟩. By unique-
ness of proof terms, the only way to produce this proof term is by using elimination
rule ∧E1 on the conclusion of the introduction rule ∧I :

M : A N : B

⟨M,N⟩ : A ∧B
∧I

fst⟨M,N⟩ : A
∧E1

=⇒R M : A

And, indeed, this derivation shows that there already is a simpler proof term as evi-
dence for A true than the proof term of fst⟨M,N⟩ : A in the conclusion, namely the
proof term A from the top left premise M : A. When read as programs with types, the
fact that program fst⟨M,N⟩ has type C reduces to the fact that the simpler program M
has type C. This is captured in the above reduction rule. In fact, these (computational)
reduction rules will turn out to directly correspond to the proof term analogue of the
logical reductions for the local soundness from the subsequent Harmony lecture.

Truth. The constructor for ⊤ just forms the unit element, ⟨ ⟩. Since there is no destruc-
tor, there is no reduction rule that would reduce ⟨ ⟩ in any way.

Implication. The constructor for implication A⊃B forms a function by λ-abstraction,
while the destructor applies the function to an argument. In general, the application

CONSTLOG LECTURE NOTES FRANK PFENNING , ANDRÉ PLATZER



L3.8 Proofs as Programs

of a function to an argument is computed by substitution. As a simple example from
mathematics, consider the following equivalent definitions

f(x) = x2 + x− 1 f = fnx ⇒ x2 + x− 1

and the computation when plugging the value 2 in for argument x:

f(2) = (fnx ⇒ x2 + x− 1)(2) = [2/x](x2 + x− 1) = 22 + 2− 1 = 5

In the second step, we substitute 2 for occurrences of x in x2 + x − 1, the body of the
λ-expression. We write [2/x](x2 + x− 1) = 22 + 2− 1.

In general, the notation for the substitution of N for occurrences of u in M is [N/u]M .
Applying a λ-abstraction λx. M to an argument N reduces to substituting N for x in
M . We therefore write the reduction rule as:

(fnu ⇒ M)N =⇒R [N/u]M

We have to be somewhat careful so that substitution behaves correctly. In particular,
no variable of N should be bound in M and no variable of M should be bound in
N in order to avoid conflict. Neither should we continue substituting N for u within
occurrences of yet another fnu ⇒ O anywhere within M . We can always achieve this
by suitably renaming bound variables—an operation which clearly does not change the
meaning of a proof term. Again, we can justify this reduction rule by investigating what
the rules do for proof term (fnu ⇒ M)N . By uniqueness of proof terms, the only way
to produce this proof term is by using elimination rule ⊃E (with a second compatible
premise N : A) on the conclusion of the introduction rule ⊃I :

u : A
u

...
M : B

fnu ⇒ M : A⊃B
⊃Iu

N : A

(fnu ⇒ M)N : B
⊃E

=⇒R [N/u]M : B

Indeed, the result [N/u]M of the reduction that substitutes N for u in M is a simpler
proof term that provides the same evidence for N true (alias this program has type N )
as the original proof term (fnu ⇒ M)N . Again, this computational reduction directly
relates to the logical reduction from the local soundness of the upcoming Harmony
lecture using the substitution notation for the right-hand side.

Disjunction. The constructors for A ∨ B inject into a sum type; the destructor distin-
guishes cases. Now the destructor can be applied to either of the two constructors inlM
or inrM . If the constructor inlM from the left injunction is used, then a reduction to
the left side of the destructor’s case distinction can be used, again using substitution
(likewise for inrM ):

case inlM of inlu ⇒ N | inrw ⇒ O =⇒R [M/u]N
case inrM of inlu ⇒ N | inrw ⇒ O =⇒R [M/w]O

CONSTLOG LECTURE NOTES FRANK PFENNING , ANDRÉ PLATZER



Proofs as Programs L3.9

To justify the reductions, we consider the derivation of elimination rule applied to each
introduction rule corresponding to the destructor applied to each constructor, for ex-
ample:

M : A

inlM : A ∨B
∨I1

u : A
u

...
N : C

w : B
w

...
O : C

case inlM of inlu ⇒ N | inrw ⇒ O : C
∨Eu,w

=⇒R [M/u]N : C

The proof term case inlM of inlu ⇒ N | inrw ⇒ O justifying C true reduces to
the simpler proof term [M/u]N justifying the same C true (respectively both programs
have type C). The analogy with the logical reduction again works in Harmony.

Falsehood. Since there is no constructor for the empty type there is no reduction rule
for falsehood. There is no computation rule and we will not try to evaluate abortM .

This concludes the definition of the reduction judgment. Observe that the construc-
tion principle for the (computational) reductions is to investigate what happens when
any destructor is applied to any corresponding constructor. This will be in direct cor-
respondence with how (logical) reductions for local soundness in the Harmony lecture
which consider what happens when an elimination rule is used in succession on the
output of an introduction rule (when reading proofs top to bottom).

Example Computations. As an example we consider a simple program for the com-
position of two functions. It takes a pair of two functions, one from A to B and one
from B to C and returns their composition which maps A directly to C.

comp : ((A⊃B) ∧ (B ⊃ C))⊃ (A⊃ C)

We transform the following implicit definition into our notation step-by-step:

comp ⟨f, g⟩ (w) = g(f(w))
comp ⟨f, g⟩ = fnw ⇒ g(f(w))

compu = fnw ⇒ (sndu) ((fstu)(w))
comp = fnu ⇒ fnw ⇒ (sndu) ((fstu)w)

The final definition represents a correct proof term, as witnessed by the following de-
duction that directly follows the proof term.

u : (A⊃B) ∧ (B ⊃ C)
u

sndu : B ⊃ C
∧E2

u : (A⊃B) ∧ (B ⊃ C)
u

fstu : A⊃B
∧E1

w : A
w

(fstu)w : B
⊃E

(sndu) ((fstu)w) : C
⊃E

fnw ⇒ (sndu) ((fstu)w) : A⊃ C
⊃Iw

(fnu ⇒ fnw ⇒ (sndu) ((fstu)w)) : ((A⊃B) ∧ (B ⊃ C))⊃ (A⊃ C)
⊃Iu

CONSTLOG LECTURE NOTES FRANK PFENNING , ANDRÉ PLATZER



L3.10 Proofs as Programs

This proof can be read off directly from the proof term we constructed above, since
it directly describes the shape of the proof and the rule to apply. For example sndu
indicates that ∧E2 has been used on u. We could also have first conducted the proof of
((A ⊃ B) ∧ (B ⊃ C)) ⊃ (A ⊃ C) true in the same way that the above proof works and
then subsequently annotate the proof with proof terms.

We now verify that the composition of two identity functions reduces again to the
identity function. First, we verify the typing of this application.

(fnu ⇒ fnw ⇒ (sndu) ((fstu)w)) ⟨(fnx ⇒ x), (fn y ⇒ y)⟩ : A⊃A

Now we show one possible sequence of reduction steps for this function. This is by no
means uniquely determined.

(fnu ⇒ fnw ⇒ (sndu) ((fstu)w)) ⟨(fnx ⇒ x), (fn y ⇒ y)⟩
=⇒R fnw ⇒ (snd ⟨(fnx ⇒ x), (fn y ⇒ y)⟩) ((fst ⟨(fnx ⇒ x), (fn y ⇒ y)⟩)w)
=⇒R fnw ⇒ (fn y ⇒ y) ((fst ⟨(fnx ⇒ x), (fn y ⇒ y)⟩)w)
=⇒R fnw ⇒ (fn y ⇒ y) ((fnx ⇒ x)w)
=⇒R fnw ⇒ (fn y ⇒ y)w
=⇒R fnw ⇒ w

We see that we may need to apply reduction steps to subterms in order to reduce a
proof term to a form in which it can no longer be reduced. We postpone a more detailed
discussion of this until we discuss the operational semantics in full.

4 Summary of Proof Terms

Judgments.
M : A M is a proof term for proposition A, see Figure 1
M =⇒R M ′ M reduces to M ′, see Figure 2

References

[How80] W. A. Howard. The formulae-as-types notion of construction. In J. P. Seldin
and J. R. Hindley, editors, To H. B. Curry: Essays on Combinatory Logic, Lambda
Calculus and Formalism, pages 479–490. Academic Press, 1980. Hitherto un-
published note of 1969, rearranged, corrected, and annotated by Howard.

[ML80] Per Martin-Löf. Constructive mathematics and computer programming. In
Logic, Methodology and Philosophy of Science VI, pages 153–175. North-Holland,
1980.

CONSTLOG LECTURE NOTES FRANK PFENNING , ANDRÉ PLATZER



Proofs as Programs L3.11

Constructors Destructors

M : A N : B

⟨M,N⟩ : A ∧B
∧I

M : A ∧B

fstM : A
∧E1

M : A ∧B

sndM : B
∧E2

⟨ ⟩ : ⊤
⊤I

no destructor for ⊤

u : A
u

...
M : B

fnu ⇒ M : A⊃B
⊃Iu

M : A⊃B N : A

M N : B
⊃E

M : A

inlM : A ∨B
∨I1

N : B

inrN : A ∨B
∨I2

M : A ∨B

u : A
u

...
N : C

w : B
w

...
O : C

caseM of inlu ⇒ N | inrw ⇒ O : C
∨Eu,w

no constructor for ⊥
M : ⊥

abortM : C
⊥E

Figure 1: Proof term assignment for natural deduction

fst ⟨M,N⟩ =⇒R M
snd ⟨M,N⟩ =⇒R N

no reduction for ⟨ ⟩

(fnu ⇒ M)N =⇒R [N/u]M

case inlM of inlu ⇒ N | inrw ⇒ O =⇒R [M/u]N
case inrM of inlu ⇒ N | inrw ⇒ O =⇒R [M/w]O

no reduction for abort

Figure 2: Proof term reductions

CONSTLOG LECTURE NOTES FRANK PFENNING , ANDRÉ PLATZER


	Introduction
	Propositions as Types
	Reduction
	Summary of Proof Terms

