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1 Introduction

The goal of this chapter is to develop the two principal notions of logic, namely propo-
sitions and proofs. Ironically, there is no universal agreement about the proper founda-
tions for these notions. The classical logic approach of defining the meaning of logi-
cal operators by induction as a function on truth values does not work for construc-
tive logic. One approach, which has been particularly successful for applications in
computer science, is to understand the meaning of a proposition by understanding its
proofs. In the words of Martin-Löf [ML96, Page 27]:

The meaning of a proposition is determined by [. . . ] what counts as a verification
of it.

A verification may be understood as a certain kind of proof that only examines the con-
stituents of a proposition, which we will formalize in a later lecture. For today’s lecture,
we will define proofs. This is analyzed in greater detail by Dummett [Dum91] although
with less direct connection to computer science. The system of inference rules that
arises from this point of view is natural deduction, first proposed by Gentzen [Gen35]
and studied in depth by Prawitz [Pra65].

We follow Martin-Löf’s approach, in a rich philosophical tradition, to explain the ba-
sic propositional connectives. We will see later that universal and existential quantifiers
and types such as natural numbers, lists, or trees naturally fit into the same framework.

We will define the meaning of the usual connectives of propositional logic (conjunc-
tion, implication, disjunction) by rules that allow us to infer when they should be true,
so-called introduction rules. From these, we derive rules for the use of propositions, so-
called elimination rules. The resulting system of natural deduction is the foundation of
intuitionistic logic which has direct connections to functional programming and logic
programming.
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http://lfcps.org/course/constlog.html


L2.2 Natural Deduction

2 Judgments and Propositions

The cornerstone of Martin-Löf’s foundation of logic is a clear separation of the notions
of judgment and proposition. A judgment is something we may know, that is, an object
of knowledge. A judgment is evident if we in fact know it.

We make a judgment such as “it is raining”, because we have evidence for it. In
everyday life, such evidence is often immediate: we look out the window and see that
it is, indeed, raining. In logic, we deal with situations where the evidence is undeniable
but indirect: we deduce the judgment by making correct inferences from other evident
judgments. In other words: a logical judgment is evident if we have a proof for it.

The most important judgment form in logic is “A is true”, where A is a proposition
After all it makes a big difference whether a proposition is just a proposition or whether
it is actually true. There are many others that have been studied extensively. For exam-
ple, “A is false”, “A is true at time t” (from temporal logic), “A is necessarily true” (from
modal logic), “program M has type τ” (from programming languages), etc. or even just
“A is a well-formed proposition”.

Returning to the first judgment, let us try to explain the meaning of conjunction. We
write A true for the judgment “A is true” (presupposing that A is a proposition. Given
propositions A and B, we can form the compound proposition “A and B”, written more
formally as A ∧B. But we have not yet specified what conjunction means, that is, what
counts as a verification of A ∧B. This is accomplished by the following inference rule:

A true B true
A ∧B true

∧I

Here the name ∧I on the rule bar stands for “conjunction introduction”, since the con-
junction is introduced in the conclusion.

This rule allows us to conclude that A ∧ B true if we already know that A true and
B true. In this inference rule, A and B are schematic variables, and ∧I is the name of the
rule. Intuitively, the ∧I rule says that a proof of A ∧B true consists of a proof of A true
together with a proof of B true.

The general form of an inference rule is

J1 . . . Jn

J
name

where the judgments J1, . . . , Jn are called the premises, and the judgment J is called the
conclusion. In general, we will use letters J to stand for judgments, while A, B, and C
are reserved for propositions.

We take conjunction introduction as specifying the meaning of A ∧ B completely.
So what can be deduced if we know that A ∧ B is true? By the above rule, to have a
verification for A∧B means to have verifications for A and B. Hence the following two
rules are justified:

A ∧B true
A true

∧E1
A ∧B true
B true

∧E2
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Natural Deduction L2.3

The name ∧E1 stands for “first/left conjunction elimination”, since the conjunction
in the premise has been eliminated in the conclusion. Similarly ∧E2 stands for “sec-
ond/right conjunction elimination”. Intuitively, the ∧E1 rule says that A true follows if
we have a proof of A ∧ B true, because “we must have had a proof of A true to justify
A ∧B true”.

We will later see what precisely is required in order to guarantee that the formation,
introduction, and elimination rules for a connective fit together correctly. For now,
we will informally argue the correctness of the elimination rules, as we did for the
conjunction elimination rules.

As a second example we consider the proposition “truth” written as ⊤. Truth should
always be true, unconditionally, which means its introduction rule has no premises.

⊤ true
⊤I

Consequently, we have no information if we know ⊤ true, so there is no elimination
rule. “No information comes out of ⊤ true if none went in.”

A conjunction of two propositions is characterized by one introduction rule with
two premises, and two corresponding elimination rules. We may think of truth as a
conjunction of zero propositions. By analogy it should then have one introduction rule
with zero premises, and zero corresponding elimination rules. This is precisely what we
wrote out above.

3 Hypothetical Judgments

Consider the following derivation, for arbitrary propositions A, B, and C:

A ∧ (B ∧ C) true

B ∧ C true
∧E2

B true
∧E1

Have we actually proved anything here? At first glance it seems that cannot be the
case: B is an arbitrary proposition; clearly we should not be able to prove that it is true.
Upon closer inspection we see that all inferences are correct, but the first judgment
A ∧ (B ∧ C) true has not been justified. We can extract the following knowledge:

From the assumption that A ∧ (B ∧ C) is true, we deduce that B must be true.

This is an example of a hypothetical judgment, and the figure above is a hypothetical
deduction from the assumption A ∧ (B ∧ C) true. In general, we may have multiple
assumptions, so a hypothetical deduction has the form

J1 · · · Jn...
J

CONSTLOG LECTURE NOTES FRANK PFENNING , ANDRÉ PLATZER



L2.4 Natural Deduction

where the judgments J1, . . . , Jn are unproven assumptions, and the judgment J is the
conclusion. All instances of the inference rules are hypothetical judgments as well (al-
beit possibly with 0 assumptions if the inference rule has no premises).

Many mistakes in reasoning arise because dependencies on some hidden assump-
tions are ignored. When we need to be explicit, we will write J1, . . . , Jn ⊢ J for the
hypothetical judgment which is established by the hypothetical deduction above. We
may refer to J1, . . . , Jn as the antecedents and J as the succedent of the hypothetical judg-
ment. For example, the hypothetical judgment A ∧ (B ∧ C) true ⊢ B true is proved
by the above hypothetical deduction that B true indeed follows from the hypothesis
A ∧ (B ∧ C) true using inference rules.

Substitution Principle for Hypotheses: We can always substitute a proof for any
hypothesis Ji to eliminate the assumption, because the proof justifies Ji (possibly from
other assumptions). Into the above hypothetical deduction, a proof of its hypothesis Ji

K1 · · · Km...
Ji

can be substituted in for Ji to obtain the hypothetical deduction

J1 · · ·

K1 · · · Km...
Ji · · · Jn...
J

This hypothetical deduction concludes J from the unproven assumptions
J1, . . . , Ji−1,K1, . . . ,Km, Ji+1, . . . , Jn and justifies the hypothetical judgment

J1, . . . , Ji−1,K1, . . . ,Km, Ji+1, . . . , Jn ⊢ J

That is, into the hypothetical judgment J1, . . . , Jn ⊢ J , we can always substitute a
derivation of the judgment Ji that was used as a hypothesis to obtain a derivation which
no longer depends on the assumption Ji. A hypothetical deduction with 0 assumptions
is a proof of its conclusion J .

One has to keep in mind that hypotheses may be used more than once, or not at all.
For example, for arbitrary propositions A and B,

A ∧B true
B true

∧E2
A ∧B true
A true

∧E1

B ∧A true
∧I

can be seen a hypothetical derivation of A ∧ B true ⊢ B ∧ A true. Similarly, a minor
variation of the first proof in this section is a hypothetical derivation for the hypothetical
judgment A ∧ (B ∧ C) true ⊢ B ∧A true that uses the hypothesis twice.
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Natural Deduction L2.5

With hypothetical judgments, we can now explain the meaning of implication “A
implies B” or “if A then B” (more formally: A⊃B). The introduction rule reads: A⊃B
is true, if B is true under the assumption that A is true.

A true
u

...
B true

A⊃B true
⊃Iu

The tricky part of this rule is the label u and its bar. If we omit this annotation, the rule
would read

A true...
B true

A⊃B true
⊃I

which would be incorrect: it looks like a derivation of A ⊃ B true from the hypothesis
A true. But since the assumption A true is introduced in the process of proving A⊃B true;
the conclusion A⊃ B true should not depend on it! Certainly, whether the implication
A⊃B is true is independent of the question whether A itself is actually true. Therefore
we label uses of the assumption with a new name u, and the corresponding inference
which introduced this assumption into the derivation with the same label u.

The rule makes intuitive sense, a proof justifying A⊃B true assumes, hypothetically,
the left-hand side of the implication so assumes A true, and uses this to show the right-
hand side of the implication by proving B true. The proof of A ⊃ B true constructs a
proof of B true from the additional assumption that A true, which may be used in the
proof.

As a concrete example, consider the following proof of A⊃ (B ⊃ (A ∧B)).

A true
u

B true
w

A ∧B true
∧I

B ⊃ (A ∧B) true
⊃Iw

A⊃ (B ⊃ (A ∧B)) true
⊃Iu

This derivation is not hypothetical (it does not depend on any assumptions). The as-
sumption A true labeled u is discharged in the last inference introducing label u, and the
assumption B true labeled w is discharged in the second-to-last inference introducing
label w. It is critical that discharged hypotheses are no longer available for reasoning
anywhere else, and that all labels introduced in a derivation are distinct to avoid incor-
rect arguments with incorrect scoping. Correct scoping of hypothesis labels is just as
important as correct scoping of function parameters, a similarity that later lectures will
explore.

Finally, we consider what the elimination rule for implication should say. By the only
introduction rule, having a proof of A⊃B true means that we have a hypothetical proof
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L2.6 Natural Deduction

of B true from A true. By the substitution principle, if we also have a proof of A true
then we get a proof of B true.

A⊃B true A true
B true

⊃E

This completes the rules concerning implication.
With the rules so far, we can write out proofs of simple properties concerning con-

junction and implication. The first expresses the interaction law that conjunction is
commutative—intuitively, an obvious property.

A ∧B true
u

B true
∧E2

A ∧B true
u

A true
∧E1

B ∧A true
∧I

(A ∧B)⊃ (B ∧A) true
⊃Iu

When we construct such a derivation, we generally proceed by a combination of
bottom-up and top-down reasoning. The next example is the interaction law of dis-
tributivity, allowing us to move implications over conjunctions. This time, we show the
partial proofs in each step. Of course, other sequences of steps in proof constructions
are also possible.

...
(A⊃ (B ∧ C))⊃ ((A⊃B) ∧ (A⊃ C)) true

First, we use the implication introduction rule bottom-up.

A⊃ (B ∧ C) true
u

...
(A⊃B) ∧ (A⊃ C) true

(A⊃ (B ∧ C)⊃ ((A⊃B) ∧ (A⊃ C)) true
⊃Iu

Next, we use the conjunction introduction rule bottom-up, copying the available as-
sumptions to both branches in the scope.

A⊃ (B ∧ C) true
u

...
A⊃B true

A⊃ (B ∧ C) true
u

...
A⊃ C true

(A⊃B) ∧ (A⊃ C) true
∧I

(A⊃ (B ∧ C))⊃ ((A⊃B) ∧ (A⊃ C)) true
⊃Iu

We now pursue the left branch, again using implication introduction bottom-up.
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Natural Deduction L2.7

A⊃ (B ∧ C) true
u

A true
w

...
B true

A⊃B true
⊃Iw

A⊃ (B ∧ C) true
u

...
A⊃ C true

(A⊃B) ∧ (A⊃ C) true
∧I

(A⊃ (B ∧ C))⊃ ((A⊃B) ∧ (A⊃ C)) true
⊃Iu

Note that the hypothesis A true is available only in the left branch and not in the
right one: it is discharged at the inference ⊃Iw. We now switch to top-down reasoning,
taking advantage of implication elimination.

A⊃ (B ∧ C) true
u

A true
w

B ∧ C true
⊃E

...
B true

A⊃B true
⊃Iw

A⊃ (B ∧ C) true
u

...
A⊃ C true

(A⊃B) ∧ (A⊃ C) true
∧I

(A⊃ (B ∧ C))⊃ ((A⊃B) ∧ (A⊃ C)) true
⊃Iu

Now we close the gap in the left-hand side by conjunction elimination.

A⊃ (B ∧ C) true
u

A true
w

B ∧ C true
⊃E

B true
∧E1

A⊃B true
⊃Iw

A⊃ (B ∧ C) true
u

...
A⊃ C true

(A⊃B) ∧ (A⊃ C) true
∧I

(A⊃ (B ∧ C))⊃ ((A⊃B) ∧ (A⊃ C)) true
⊃Iu

The right premise of the conjunction introduction can be filled in analogously. We
skip the intermediate steps and only show the final derivation.

A⊃ (B ∧ C) true
u

A true
w

B ∧ C true
⊃E

B true
∧E1

A⊃B true
⊃Iw

A⊃ (B ∧ C) true
u

A true
v

B ∧ C true
⊃E

C true
∧E2

A⊃ C true
⊃Iv

(A⊃B) ∧ (A⊃ C) true
∧I

(A⊃ (B ∧ C))⊃ ((A⊃B) ∧ (A⊃ C)) true
⊃Iu
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L2.8 Natural Deduction

Note how important the correct scoping of assumptions is. The assumptions labeled w
and v are both assuming the same A true. But the assumption labeled w cannot be used
in the proof of A⊃C true. Otherwise, we could incorrectly prove (A⊃ (B ∧C))⊃ ((A⊃
B)∧C), which would claim to construct C out of nothing from a mere function turning
A into B ∧ C.

4 Disjunction and Falsehood

So far we have explained the meaning of conjunction, truth, and implication. The dis-
junction “A or B” (written as A ∨ B) is more difficult, but does not require any new
judgment forms. Disjunction is characterized by two introduction rules: A ∨ B is true,
if either A is true or B is true.

A true
A ∨B true

∨I1
B true

A ∨B true
∨I2

Now it would be incorrect to have an elimination rule such as

A ∨B true
A true

∨E1?

because even if we know that A ∨B is true, we do not know whether the disjunct A or
the disjunct B is true. Concretely, with such a rule we could unsoundly derive the truth
of every proposition A as follows:

⊤ true
⊤I

A ∨ ⊤ true
∨I2

A true
∨E1?

Thus we take a different approach. If we know that A ∨ B is true, we must consider
two cases: A true and B true. If we can prove a conclusion C true in both cases, then C
must be true! Written as an inference rule:

A ∨B true

A true
u

...
C true

B true
w

...
C true

C true
∨Eu,w

If we know that A ∨ B true then we also know C true, if that follows both in the case
where A ∨B true because A is true and in the case where A ∨B true because B is true.
Note that we use once again the mechanism of hypothetical judgments. In the proof
of the second premise we may use the assumption A true labeled u, in the proof of the
third premise we may use the assumption B true labeled w. Both are discharged at the
disjunction elimination rule. Of course, labels u and w must be new and different.
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Natural Deduction L2.9

Let us justify the conclusion of this rule more explicitly. By the first premise we
know A ∨ B true. The premises of the two possible introduction rules are A true and
B true. In case A true we conclude C true by the substitution principle and the second
premise: we substitute the proof of A true for any use of the assumption labeled u in
the hypothetical derivation. The case for B true is symmetric, using the hypothetical
derivation in the third premise.

Because of the complex nature of the elimination rule, reasoning with disjunction is
more difficult than with implication and conjunction. As a simple example, we prove
the commutativity of disjunction.

...
(A ∨B)⊃ (B ∨A) true

We begin with an implication introduction.

A ∨B true
u

...
B ∨A true

(A ∨B)⊃ (B ∨A) true
⊃Iu

At this point we cannot use either of the two disjunction introduction rules. The
problem is that neither B nor A follow from our assumption A ∨B! So first we need to
distinguish the two cases via the rule of disjunction elimination.

A ∨B true
u

A true
v

...
B ∨A true

B true
w

...
B ∨A true

B ∨A true
∨Ev,w

(A ∨B)⊃ (B ∨A) true
⊃Iu

The assumption labeled u is still available for each of the two proof obligations, but we
have omitted it, since it is no longer needed.

Now each gap can be filled in directly by the two disjunction introduction rules.

A ∨B true
u

A true
v

B ∨A true
∨I2

B true
w

B ∨A true
∨I1

B ∨A true
∨Ev,w

(A ∨B)⊃ (B ∨A) true
⊃Iu

This concludes the discussion of disjunction. Falsehood (written as ⊥, sometimes
called absurdity or falsum) is a proposition that should have no proof! Therefore there,
crucially, are no introduction rules for ⊥.
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L2.10 Natural Deduction

Since there cannot be a proof of ⊥ true (it has no introduction rule), it is sound to
conclude the truth of any arbitrary proposition C if we know ⊥ true. This justifies the
elimination rule

⊥ true
C true

⊥E

We can also think of falsehood as a disjunction between zero alternatives. By analogy
with the binary disjunction, we therefore have zero introduction rules, and an elimina-
tion rule in which we have to consider zero cases. This is precisely the ⊥E rule above.

From this it might seem that falsehood it useless: we can never prove it. This is cor-
rect, except that we might reason from contradictory hypotheses! Even if ⊥ true cannot
be proved, ⊥ ⊃ ⊥ true can be proved. We will see some examples when we discuss
negation, since we consider the proposition “not A” (written ¬A) as an abbreviation
for A ⊃ ⊥. In other words, ¬A is true precisely if the assumption A true is contradic-
tory because we could derive ⊥ true. That is, a proof of the impossible ⊥ true can be
constructed from any proof of A true.

5 Natural Deduction

The judgments, propositions, and inference rules we have defined so far collectively
form a system of natural deduction. It is a minor variant of a system introduced by
Gentzen [Gen35] and studied in depth by Prawitz [Pra65]. One of Gentzen’s main mo-
tivations was to devise rules that model mathematical reasoning as directly as possible,
although clearly in much more detail than in a typical mathematical argument.

The specific interpretation of the truth judgment underlying these rules is intuition-
istic or constructive. This differs from the classical or Boolean interpretation of truth. For
example, classical logic accepts the proposition A ∨ (A⊃B) as true for arbitrary A and
B, although in the system we have presented so far this would have no proof. Classical
logic is based on the principle that every proposition must be true or false. If we dis-
tinguish these cases we see that A ∨ (A ⊃ B) should be accepted, because in case that
A is true, the left disjunct holds; in case A is false, the right disjunct holds. In contrast,
intuitionistic logic is based on explicit evidence, and evidence for a disjunction requires
evidence for one of the disjuncts. We will return to classical logic and its relationship to
intuitionistic logic later; for now our reasoning remains intuitionistic since, as we will
see, it has a direct connection to functional computation, which classical logic lacks.

We summarize the rules of inference for the truth judgment of intuitionistic proposi-
tional logic introduced so far in Figure 1.

6 Notational Definition

So far, we have defined the meaning of the logical connectives by their introduction
rules, which is the so-called verificationist approach. Another common way to define a
logical connective is by a notational definition. A notational definition gives the meaning
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Natural Deduction L2.11

Introduction Rules Elimination Rules

A true B true
A ∧B true

∧I
A ∧B true
A true

∧E1
A ∧B true
B true

∧E2

⊤ true
⊤I

no ⊤E rule

A true
u

...
B true

A⊃B true
⊃Iu

A⊃B true A true
B true

⊃E

A true
A ∨B true

∨I1
B true

A ∨B true
∨I2

A ∨B true

A true
u

...
C true

B true
w

...
C true

C true
∨Eu,w

no ⊥I rule
⊥ true
C true

⊥E

Figure 1: Rules for intuitionistic natural deduction

of the general form of a proposition in terms of another proposition whose meaning has
already been defined. For example, we can define logical equivalence, written A ≡ B as
(A⊃B)∧(B⊃A). This definition is justified, because we already understand implication
and conjunction, so can understand A ≡ B by expansion.

As mentioned above, another common notational definition in intuitionistic logic is
the definition ¬A = (A ⊃ ⊥). Several other, more direct definitions of intuitionistic
negation also exist, and we will see some of them later in the course. Perhaps the most
intuitive one is to say that ¬A true if A false, but this requires the new judgment of
falsehood.

Notational definitions can be convenient, but they can be a bit cumbersome at times.
We sometimes give a notational definition and then derive introduction and elimination
rules for the connective from its notational definition. It should be understood that
these rules, even if they may be called introduction or elimination rules, have a different
status from those that define a connective. In this particular case, we get the derived

CONSTLOG LECTURE NOTES FRANK PFENNING , ANDRÉ PLATZER



L2.12 Natural Deduction

rules:

A true
u

...
⊥ true
¬A true

¬Iu
¬A true A true

⊥ true
¬E

You should convince yourself that these are indeed derived rules under the notational
definition of ¬A. They also almost have the form of introduction and elimination rules,
except that we use ⊥ to define ¬A, while previously we avoided using other connec-
tives besides the one we are defining. When following the strict verificationist program,
the use of other connectives or propositions that are not part of the original propositions
should be frowned upon in introduction rules. The underlying reason is that this might
ruin the entire verificationist program of understanding propositions in terms of how
they can be verified. If the introduction rule of one operator is defined in terms of an-
other operator, whose introduction rule is again defined in terms of the first operator,
then this mutual recursion has not given meaning to either operator. Just imagine how
much you learn about roses if you were to take “A rose is a rose is a rose” as their
definition.
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