
ConstLog: Constructive Logic

Lecture Notes on
Introduction to Constructive Logic

Frank Pfenning André Platzer

Carnegie Mellon University ∥ Karlsruhe Institute of Technology
Lecture 1

1 Introduction

Logic is the art of reasoning. Its mode of operation is the study how to draw conclusions
from premises (called inference). This makes logic a fundamental part of mathematics,
philosophy but also computer science, because specification with logic and verification
with logical inferences play a fundamental role in the design of programs and computer
hardware. Once one understands how useful and general logic is, it does not take long
to realize that there are multiple logics with different purposes.

The most common logic is classical logic in the tradition of Gottlob Frege, Bertrand
Russel and Alfred North Whitehead, which is based on the principle that every formula
has a truth value of either true or false. This makes it exceedingly easy to define and
understand logical operators (connectives such as ∧ for and, ∨ for or, ¬ for not) as
functions on these truth-values often given by truth tables. Classical logic is good for
many purposes, but it also has its surprises. This lecture discusses some of them. For
example, as every formula A in classical logic either has the truth value true or the truth
value false, the formula A∨¬A is always true (called the law of excluded middle). This
is fine on its own but also causes paradoxes when generalized without sufficient care.
What can also happen in classical logic is that something exists that satisfies a formula
and yet there is no way of telling what that something specifically is.

This course studies constructive logic, which, despite its similarities in the logical lan-
guage, is based on a very different foundation than classical logic. Constructive logic
is based on the principle that truth is defined by proof1 and that (constructive) proofs

1Admittedly there are many different ways of introducing both classical logic and constructive logic
and either using semantic notions of truth or syntactic notions of proof as the basis. The explanation
here refers to the most canonical, simple, and natural introduction of classical logic (which is based on
meaning) and of constructive logic (which is based on syntactic proof).

CONSTLOG LECTURE NOTES 15.4.2024 FRANK PFENNING , ANDRÉ PLATZER

http://lfcps.org/course/constlog.html


L1.2 Introduction to Constructive Logic

constitute constructions. It is this constructive nature of constructive logic that gives it
a very natural fit to computer science and its study of algorithms, because the concepts
of constructions, algorithms, and programs ultimately differ but in name.2

This course will answer questions such as:

• What is the difference between a proof and a program?3

• Do all true formulas have witnesses? This question, of course, only makes sense
for formulas that even claim existential-flavored properties to begin with.

• Is there a way to read off a program from a proof?

• How can proofs form the basis of computation? How can formulas?

• What is a type from a logical perspective?

• Is propositional constructive logic decidable? It is based on proof, not truth-tables.

2 Topics

The course is divided into four parts:

I. Proofs as Evidence for Truth ∥ Natural Deduction

II. Proofs as Programs ∥ Functional Programming

III. Propositions as Programs ∥ Proof Search as Computation ∥ Logic Programming

IV. Substructural Logics / Modal Logics / Type Systems etc.

Proofs are central in all parts of the course, and give it its constructive nature. In each
part, we will exhibit connections between proofs and forms of computations studied in
computer science. These connections will take quite different forms, which shows the
richness of logic as a foundational discipline at the nexus between philosophy, mathe-
matics, and computer science.

In Part I we establish the basic vocabulary and systematically study propositions and
proofs. While philosophical in spirit, the treatment will be formal in order to permit an
easy transition into computational applications. We will also discuss some properties of
the logical systems we develop and strategies for proof search. We aim at a systematic
account for the usual forms of logical expression, providing us with a flexible and thor-
ough foundation for the remainder of the course. We will also highlight the differences
between constructive and non-constructive reasoning. Typical exercises in this section
test basic understanding of logical connectives and how to reason with them.

2As Alan J. Perlis accurately observed: “Think of all the psychic energy expended in seeking a funda-
mental distinction between ‘algorithm’ and ‘program’.”

3Understanding why a proof is like a program does not get you any closer to understanding the Mad
Hatter’s challenge why a raven is like a writing desk, but can be just as vexing.

CONSTLOG LECTURE NOTES FRANK PFENNING , ANDRÉ PLATZER



Introduction to Constructive Logic L1.3

In Part II we focus on constructive reasoning. This means we consider only proofs
that describe algorithms. This turns out to be quite natural in the framework we have
established in Part I. In fact, it may be somewhat surprising that many proofs in mod-
ern mathematics are not constructive in this sense anymore. Concretely, we find that
for a certain fragment of logic, constructive proofs correspond to functional programs
and vice versa. More generally, we can extract functional programs from constructive
proofs of their specifications. We often refer to constructive reasoning as intuitionistic,
while non-constructive reasoning is classical. Typical exercises in this part may explore
the connections between proofs and functional programs, and between theorem prov-
ing and programming, which are all ultimately the same in this perspective. We will
also discover how A∨¬A is a triviality in classical logic but, when it holds for a specific
proposition A, a deep insight in constructive logic.

In Part III we study a different connection between logic and programs where proofs
are the result of computation rather than the starting point as in Part II. This gives rise to
the paradigm of logic programming where the process of computation is one of system-
atic proof search. Depending on how we search for proofs, different kinds of algorithms
can be described at an exceedingly high and eloquent level of abstraction. Typical ex-
ercises in this part may focus on exploiting proof search as computation via logic pro-
gramming to implement various algorithms in concrete languages such as Prolog.

In Part IV we study logics with more general and more refined notions of truth. For
example, in temporal logic we are concerned with reasoning about truth relative to
time. Another example is the modal logic S5 where we reason about truth in a collec-
tion of worlds, each of which is connected to all other worlds. Proofs in this logic can be
given an interpretation as distributed computation. Similarly, linear logic is a substruc-
tural logic where truth is ephemeral and may change in the process of deduction. As
we will see, this naturally corresponds to imperative programming. Time permitting,
we might also explore how the basis for type systems that constructive logic provides
can be generalized and made more uniform.

The core topics of this course are intuitionistic logic, natural deduction, Curry-Howard
isomorphism, propositions as types, proofs as programs, formulas as programs, func-
tional programming, logic programming, Heyting arithmetic and primitive recursion,
cut elimination, connections between classical and constructive logic, inductive defi-
nitions, sequent calculus, and decidable classes. Advanced topics may include type
theory, proof search, linear logic, temporal logic, modal logic.

3 Goals

There are several related goals for this course. The first is simply that we would like
students to gain a good working knowledge of constructive logic and its relation to
computation. This includes the translation of informally specified problems to logical
language, the ability to recognize correct proofs and construct them.

The second set of goals concerns the transfer of this knowledge to other kinds of
reasoning. We will try to illuminate logic and the underlying philosophical and mathe-

CONSTLOG LECTURE NOTES FRANK PFENNING , ANDRÉ PLATZER



L1.4 Introduction to Constructive Logic

matical principles from various points of view. This is important, since there are many
different kinds of logics for reasoning in different domains or about different phenom-
ena4, but there are relatively few underlying philosophical and mathematical princi-
ples. Our second goal is to teach these underlying principles so that students can apply
them in different domains where rigorous reasoning is required.

A third set of goals relates to specific, important applications of logic in the prac-
tice of computer science. Examples are the design of type systems for programming
languages, specification languages, or verification tools for various classes of systems.
While we do not aim at teaching the use of particular systems or languages, students
should have the basic knowledge to quickly learn them, based on the materials pre-
sented in this class.

These learning goals present different challenges for students from different disci-
plines. Lectures, recitations, practicing, and the study of these notes are all necessary
components for reaching them. These notes do not cover all aspects of the material
discussed in lecture, but provide a point of reference for definitions, theorems, and mo-
tivating examples. Recitations are intended to answer students’ questions and practice
problem solving skills that are critical for applying the material.

4 Russell’s Paradox and LEM

The first shock to the working principles of classical logic came from Bertrand Rus-
sell’s paradox illustrating difficulties when its law of excluded middle is indiscriminately
applied to anything. Russel’s set of all sets that do not contain themselves

R = {x : x ̸∈ x}

causes a foundational paradox when asking whether R itself is in R. If it is then, by the
definition of R, it is not supposed to be. If it is not, then, again by definition of R, it
should have been. If by law of excluded middle either R ∈ R or R ̸∈ R has to be the
case, then, either way, R ∈ R iff R ̸∈ R, which is paradoxical. Russell’s paradox can be
resolved within set theory or when considering types, which are a part of the purpose
of this course. After all, for the question whether x is contained in R to make sense, the
type of R should denote a set of the type that x denotes, which promptly identifies the
question whether R ∈ R as neither true nor false but entirely meaningless.

A constructive proof of a disjunction A ∨ B will either be a proof of A or a proof of
B and not just a classical logical proof that the disjunction A ∨ B has to have the truth
value true. This makes it impossible to generally prove the law of excluded middle in
A ∨ ¬A, because one cannot know for arbitrary propositions whether A has a proof or
whether ¬A has a proof even if classical logicians can write down the truth table and
convince themselves that one of the two disjuncts will have the truth value true either
way. When A is Fermat’s last theorem, then a constructive proof of A ∨ ¬A is a big

4for example: classical, intuitionistic, modal, dynamic, second-order, higher-order, temporal, epistemic,
linear, relevance, affirmation, . . .

CONSTLOG LECTURE NOTES FRANK PFENNING , ANDRÉ PLATZER



Introduction to Constructive Logic L1.5

achievement that took almost 400 years of hard work while a classical proof of A ∨ ¬A
is a trivial observation.

5 Intuitionism

We call a logic constructive if its proofs describe effective constructions. The emphasis
here is on effective which is to say that the construction conveyed by a proof can actually
be carried out mechanically. For the purpose of computer science, a construction is
simply an algorithm, so constructive proofs describe algorithms. At first one might
think that all proofs describe constructions of this form, and this was historically true
for a long time. At some point in the 19th century this direct link between mathematics
and computation has gotten lost. Some mathematicians starting with Brouwer objected
to this and started to develop a foundations of mathematics in which all proofs denote
effective constructions.

In order to understand this distinction better, we start with a theorem that illustrates
the distinction, the so-called Banach-Tarski Paradox.5

Theorem 1. Given a solid ball in 3-dimensional space, there exists a decomposition of the ball
into a finite number of disjoint subsets, which can then be put back together in a different way
to yield two identical copies of the original ball. The reassembly process involves only moving
pieces around and rotating them, without changing their shape. The reconstruction can work
with as few as five pieces.

This is considered paradoxical, since we obviously cannot carry out such a decompo-
sition in the physical reality. The intermediate pieces are in fact non-measurable infinite
scatterings of points, motivating the development of measure theory in mathematics to
distinguish measurable sets from nonmeasurable sets. The decomposition relies criti-
cally on the axiom of choice in set theory, which is highly non-constructive.

This is the kind of theorem (and proof, which we not show here but is sketched in
the article) that mathematician L.E.J. Brouwer6 might have objected to. It is meaning-
less with respect to our understanding of effective constructions, even if the formalities
of its proof are sound. This entails a criticism of Hilbert’s program, who posited that
at the foundations of mathematics should be a formal system of axioms and inference
rules with respect to which we can judge the correctness of mathematical arguments.
Brouwer called himself an intuitionist, perhaps to contrast himself to Hilbert as a for-
malist.7 Since intuitionistic logic has subsequently also been formalized (e.g., by Kol-
mogorov and Heyting), the modern way of framing the opposing sides are intuitionistic
logic (or arithmetic) and classical logic (or arithmetic).

One of the key differences is the interpretation of the existential quantifier. In intu-
itionistic logic, proving ∃x.A(x) needs a witness t and a proof of A(t). In classical logic,

5See https://en.wikipedia.org/wiki/Banach-Tarski_paradox
6See https://en.wikipedia.org/wiki/L._E._J._Brouwer
7For more on this controversy in the foundations of mathematics, see
https://en.wikipedia.org/wiki/Brouwer-Hilbert_controversy.

CONSTLOG LECTURE NOTES FRANK PFENNING , ANDRÉ PLATZER

https://en.wikipedia.org/wiki/Banach-Tarski_paradox
https://en.wikipedia.org/wiki/L._E._J._Brouwer
https://en.wikipedia.org/wiki/Brouwer-Hilbert_controversy


L1.6 Introduction to Constructive Logic

it is sufficient to show that ∀x.¬A(x) is impossible without exhibiting an actual witness
for x in the proof.

As example, we consider the following theorem and proof.

Theorem 2. There are two irrational numbers a and b such that ab is rational.

Proof: Consider
√
2
√
2
. There are two cases:

Case:
√
2
√
2

is rational. Then a = b =
√
2 satisfies the claim.

Case:
√
2
√
2

is irrational. Then a =
√
2
√
2

and b =
√
2 satisfy the claim, since ab =

(
√
2
√
2
)
√
2 =

√
2
2
= 2.

2

At this point, the classical mathematician is profoundly happy, since this is an ex-
tremely short and elegant proof of a prima facie nontrivial theorem. The intuitionist
is profoundly unhappy, since the proof does not actually exhibit irrational witnesses
a and b such that ab is rational. They might either be a = b =

√
2, or they might be

a =
√
2
√
2

and b =
√
2, but the proof does not show which it is. Therefore an intuitionist

should reject this proof.
The step which turns out to be incorrect here is to assume that there are two cases

(either
√
2
√
2

is rational or not) without knowing which of the cases hold. More gener-
ally, an intuitionist rejects the law of excluded middle that any proposition is either true
or false (in symbols: A ∨ ¬A). Concretely, a constructive proof of a disjunction A ∨ B
is either a proof of A or a proof of B. So in addition to existential quantification, the
intuitionistic and classical mathematician disagree on the interpretation of disjunction.

However, all is not lost! Intuitionists look at the above proof and say

I understand your proof, but it is for a different theorem! What you have proven is:

Theorem. If
√
2
√
2

is rational or it is not, then there are two irra-
tional numbers a and b such that ab is rational.

Surprisingly, as long as we stick to pure logic, or perhaps the theory of natural num-
bers, any classical proof can be reinterpreted as an intuitionistic proof but of a different
theorem!8 This suggests that, once we accept that intuitionism can in fact also be for-
malized, intuitionistic and classical are no longer in conflict. Instead, intuitionistic logic
is a generalization of classical logic in the sense that it has a constructive existential quan-
tifier and a constructive disjunction, which is absent from classical logic. At the same
time, all classical theorems and proofs can be uniformly imported into intuitionistic
logic under some translation.

The intuitionistic interpretation of the proof above yields another question: what is
the nature of implication? The intuitionistic interpretation of this particular example

8We may show this interpretation in a future lecture.

CONSTLOG LECTURE NOTES FRANK PFENNING , ANDRÉ PLATZER



Introduction to Constructive Logic L1.7

clarifies this: the proof of A ⊃ B consists of a function to convert a proof of A into a

proof of B. Here, this function proceeds by analyzing the proof of whether
√
2
√
2

is
rational or not. If it is rational, we return the witnesses a = b =

√
2, together with the

proof that ab is rational in this case (which we were in fact given). If it is irrational, we

return the witnesses a =
√
2
√
2

and b =
√
2, together with a (simple equational) proof

that ab = 2 in this case. With a suitable understanding, this function seems en route to
a perfectly good program.

Through this example, we have already identified three critical intuitionistic princi-
ples and add two more (Troelstra and van Dalen):

1. An intuitionistic proof of ∃x.A(x) exhibits a witness t and a proof of A(t).

2. An intuitionistic proof of A ∨B consists of either a proof of A or a proof of B.

3. An intuitionistic proof of A⊃B contains a construction that transforms a proof of
A into a proof of B.

4. Additionally, an intuitionistic proof of ∀x.A(x) contains a construction that takes
an arbitrary element d as argument and exhibits a proof of A(d).

5. ⊥ has no proof and an intuitionistic proof of ¬A is a construction taking a (hypo-
thetical) proof of A to a contradiction.

To achieve these, an intuitionist has to reject some classical reasoning principles or ax-
ioms. In natural deduction (as discussed in Lecture 2), this is manifest in the single
axiom of excluded middle.

As a final example, consider the claim:

Theorem 3. Among all fast algorithms, there is a “super NP-complete algorithm”: if this
algorithm’s results can be checked quickly, then every algorithm’s results can be checked quickly.

In logical language, we could formalize this claim as

∃x. (quickcheck(x)⊃ ∀y. quickcheck(y))

where the quantifiers range over all algorithms (never mind that we’re ultimately using
constructive logic proofs as algorithms instead of as objects that quantifiers range over).
Here is the (non-constructive!) proof

Proof: Either every algorithm’s results can be checked quickly, or there is at least one
algorithm s whose results cannot be checked quickly.

Case: Every algorithm’s results can be checked quickly. Then any x will do9, because
the conclusion of the implication holds.

9Of course, there still needs to be some algorithm at all, but every student who doubts this may want to
take their first semester classes again just in case.

CONSTLOG LECTURE NOTES FRANK PFENNING , ANDRÉ PLATZER



L1.8 Introduction to Constructive Logic

Case: There is some algorithm s whose results cannot be checked quickly. Then this al-
gorithm s is a super NP-complete: since quickcheck(s) is false, then the implication
quickcheck(x)⊃ ∀y. quickcheck(y) is true.

2

This shallow proof is non-constructive (and has nothing to do with the Cook-Levin the-
orem that witness the SAT problem has this property among all problems with quickly
checkable answers), because we use a form of the excluded middle to avoid naming
a witness to the existential. Actually, as long as the domain of quantification is non-
empty (which is assumed in classical logic except in free logics), this proof has nothing
to do with algorithms and the quick check capabilities of their results, but the proof
above applies to the logical form

∃x. (A(x)⊃ ∀y.A(y))

Intuitionistically, we cannot prove this without further assumptions about A.10

The next lecture looks closely at the intuitionistic meaning of the logical connectives
and their proof rules, based on the interpretation we sketched in this lecture.

10Exercise: which intuitionistically true proposition does the proof above establish instead?

CONSTLOG LECTURE NOTES FRANK PFENNING , ANDRÉ PLATZER


	Introduction
	Topics
	Goals
	Russell's Paradox and LEM
	Intuitionism

