Constructive Logic (15-317), Spring 2021
Recitation 5: Recurse in proofs (2021-03-01)
André Platzer et al

1 Heyting Arithmetic

Now that we have fully explored the surrounding machinery, let’s try and look at a more sophisticated system of logic.
— =V Uu
x:nat C(x) true

n: nat C(0) true C(s x.) true
C(n) true

natE**

The other was the rule of primitive recursion, which introduces a new term constructor R for each type t:

xX:nat r:t

n:nat fo: 7 ts: T
R(n, to,x.r.ts):

natE™"

Its behaviour is captured by the following reduction rules:

R(0, to, x. 1. ts) =R to,
R(sn’,ty, x.7.ts) = [R(n’, to, x. 7. ts)[r][n" /x] ts.

These rules R indicate that R describes a recursive function “R(1)” on the first parameter, with value ty when n = 0, and
value [R(n")/r][n’ /x]t; when n = s n’. This motivates the more readable schema of primitive recursion, where we define the
function (call it “f” to avoid confusion) f by cases:

£(0) = to,
f(s x) = ts(x, f(x)).

We can recover the recursor version of the definition as follows:

f = (fnn = R(n, to, x.r-ts(x,7))).

1.1 All of the rules in one place!

Here are all of the Heyting arithmetic rules.

natly X : nat

0 : nat s X : nat natls

y:nat C(y) true

x:nat C(0) true C(s y) true

yu
C(x) true natk
g x=ytrue
0=0true sx:sytrue_lss
0=sxtrue _ sx =0 true _ sX=sylrue
Ctrue Eos C true 0 X =1y true Ess
RO foxrt) =rto R0 Rismto,xrt) =g R0, o, xrt)/Alnjxdt. R
A(x) true x =ry A(y) true x =r Yy
R E1 =r Ez
A(y) true A(x) true

1.2 Working with these ideas

Task 1. The judgmental form of the principle of induction can be used to show the following more traditional formulation
that uses universal quantification:

Vn : nat. C(0) D (Vx : nat. C(x) D C(s x)) D C(n) true.

Solution 1:

Vx:nat.C(x) > C(sx) _ x:nat
C(x) D> C(s x)
n:nat C0) " CGs x)
C(n)
(Vx : nat. C(x) D C(s x)) D C(n)
C(0) > (Vx : nat. C(x) > C(s x)) > C(n)
Vn : nat. C(0) o (Vx : nat. C(x) > C(s x)) > C(n)

VE w
C
) DE

natE*%

Dl

IM

VI

Task 2. Prove
Vn:nat.R(n,0,x.r.s (sr)) = R(n,n,x.r.sr) true

You may assume for the purposes of this proof that R(s y,s y,x.r.s r) =g s (R(s y,y, x.r.s r)) (note that while they are
equivalent, neither side actually reduces to the other).

Furthermore, although this is not a rule, assume you may step underneath successors, as if you have a rule = I"with the
premise x =g y and conclusion s x =g s V.

Solution 2: Let the following section be called X:

=r o
=R E>

0=0 true _ oo R(0,0,x.r.s (s 7)) =gr 0 true
R(0,0,x.r.s (s 7)) = 0 true R(0,0,x.r.sv) =g 0 true

R(0,0,x.r.s (s 7)) = R(0,0, x.r.s 1) true

=R lo
=R E>

Let the following section be called Y:

R(y,0,x.r.s (s 1)) = R(y, y, x.r.s t) true " 3
s (R(y,0,x.rs (s 1)) =s (R(y, y,x.r.s 1)) true

- &8s

s (s (R(y,0,x.rs (s 1)) =s (s (R(y, y,x.r.s 1)) true =1 R(s y,0,x.r.s (s 7)) =r s (s (R(y,0,x.7.s (s 1)))) true =rls
R(s y,0,x.rs (s) = s (s (R(y, y,x.r.5 1)) R
Let the following section be called Z:
R(sy,y,xrsr) =g s (R(y,y,x.r.sr)) true =rls
=R I

Y s(R(sy,y,xrst)) =rs (s (R(y,y, x.rsr))) true

Risy,0,xrs(s1) = (R(s y,y, x.1s 1)) true TRE2 R Y,sy,xrsr) =g s (R(sy,y,x.r.sr)) true glVer;
R(sy,0,x.rs(sr)) =R(s y,s y,x.r.sr) true =R L2
The full proof is then:
a:nat X Z o
R(a,0,x.rs (sr)) = R(a,a,x.rs) true natk v

Vn :nat.R(n,0,x.r.s (s 1)) = R(n,n,x.r.s r) true

2 Complete induction

2.1 Inequality

Similarly to equality, there are multiple ways to formally define inequality. Here, we only focus on <. The introduction rules
are defined on the introduction rules for natural numbers. 0 is less or equal to any number (< Iy,) and taking the succesors
does not break the order (< I;;). Compared to the case of equality, we have one less elimination rule. There is no equivalent
to = Ips as 0 < s x does not contain any information.

<] X <y true <]
0<xtrue = sx <sytrue = %
sx <0 true sx <sy true
sx=Due (py SNV g,
C true X <y true

Task 3. Prove that inequality is reflexive, i.e.
¥n:nat.n <n true

Solution 3:

—_—w
x < X true
sXx < s X true

< I

Exw

<]
n: nat 0<0 true = %

n <n true
Vn :nat.n < n true

nat

li’l
Task 4. Prove that inequality is transitive, i.e.
Vm :nat.¥n :nat.¥o :nat. m <n>n<o0Dm<o true
Solution 4: We write C(x) for the formula Vn : nat.Vo : nat.x < n > n <0 D x < o true. We thus want to prove

Vm : nat. C(m).
Let the following section be called Z:

_—u -
C(x) true y: nat VE
Yo:nat.x<yDy<oDx<otrue Z: nat sx<sytrue ©
X<yoy<z>Dx<zltrue VE X <y true £ Sy <sztrue
D)

y<zDx<ztrue Yy <z true E
2

/

/

ss w

SS

x <z true

Let the following section be called Y:

w Z
sy <0 true . x < 7 true
sx<0true = ° [sx<sztrue — ¥
0: nat sy<0Dsx <0 true SY<szDsXx<sztrue ol)
sy<0Dsx <o true natk
Let the following section be called X:
—— v
sx <0 true Y
SESO
0<o0Dsx<otrue o sy<oDsx <o true y
n: nat sx<0D>0<o0D>sx<otrue SXS<sYDsy<oDsx<otrue -l y
sx<non<o>Ssx<otrue o nate’
C(s x) true ’
The full proof is then:
oo Sl
0<otrue
VI, VI°, DI, DI X
m: nat C(0) true C(s x) true
natE*"
C(m) true

m

Vm : nat. C(m) true

2.2 Complete induction

Task 5. Prove by mathematical induction that complete induction is sound, i.e.

Vx : nat.(Vm : nat.(s m < x D C(m)) D C(x)) D ¥Yn : nat. C(n)

You may use directly that inequality is reflexive and transitive.

Solution 5: We assume Vx : nat. (Vm :nat.(s m < x D C(m)) D C(x)). We will prove a stronger induction property:

Vk : nat. (k < n D C(k)). It is easy to see that it implies C(n) by reflexivity of inequality.

« Base: n = 0. We distinguish whether k is 0 or not.

- ifk =0, by VI, Dl and < E49, we prove ¥Ym : nat. (s m < 0 > C(m)).
Vx : nat.(Vm : nat. (s m < x D C(m)) D C(x)) by assumption

Vm :nat.(sm < 0D C(m)) > C(0) by VE
C(0) by DE
0<0>C(0) by DI

- ifk = s K/, then we prove s K’ <0 D C(k) by Dl and < Ey.
« IH: Vk : nat. (k < n’ D> C(k))
« Step: n = s n’. Again, we distinguish whether k is 0 or not.

- if k = 0, we redo the same proof as before to show C(0). Then, by using DI, we have 0 < n D C(0).

- ifk=sk',sk’ <sn’implies k' < n’ by < Eg;. We prove first Ym : nat.(s m < sk’ O C(m)).

sm<sk’ by assumption u
m<k by < Ess
m<n' by transitivity
C(m) by IH
sm < sk’ D C(m) by DI*
Vm : nat.(s m < sk’ D C(m)) by VI™

We can then apply our original assumption and conclude:
Vx :nat.(Vm :nat.(s m < x D C(m)) D C(x)) by assumption

Vm :nat.(sm < sk’ D C(m)) > C(sk’) by VE
C(s k') by DE
sk’ <sn’ DC(sk’) by DI

3 Warshall algorithm

Apart from natural numbers, other inductive objects can be defined, like lists. Here we describe the rules for a list of elements

of type t.
x:T p:tlist

m |IStlnil Xupit list |'St|cons
_ : u
x:t g:tlist C(q) true
p:list C(nil) true C(x = q) true

b EXGU
C(p) true listE

Having this new data structure at hand, we can reason about more complex properties. We refer to the example on
Warshall’s algorithm in the lecture notes for more details on that matter.

Constructive Logic (15-317), Spring 2021
Recitation 8: Playing with proof systems (2021-03-24)
Evan Cavallo, Oliver Daids, Giselle Reis

1 All the sequent calculi

We have seen in lecture four different sequent calculi, each improving on the previous for automatic
(and, let’s be honest, manual) proof search.

1.1 Sequent calculus

First there was sequent calculus, which can be obtained quite straightforwardly from the natural
deduction calculus with verification judgments.

I A—B I A>DB—A I,AD>DB,B=C
T—A>B [LA>B— C

DL

IT—A T—B IAAB,A=C I AANB,B=C

r—=ar8 M Tars=c " Tars=cC

AL,

I'=—8B N'AvBA=—C T,AVB,B=C

r—=avp 'R TAVB— C VL

I'—=A

r—=avg 'k

TR

I=T F,J_:>CLL

I—,IPTP it

1.2 Restricted sequent calculus

We quickly realize that the sequent calculus above can’t be good for proof search, as it keeps a copy
of every formula potentially wasting memory and increasing the search space. So we notice we
can restrict it and, in the end, the only formula we actually need to keep copies of are implications
on the left.

LA—B . TASB—A LB—C
I—SA>DB " [LA>B—C

DL

I—>A T—>B . LAB—C
I —AAB I[LAAB—C

L

' —B ITA—C I,B—C

r >avs 'R rave—c VL

r— A

r >avg 'k

71",P—>let 71"—>TTR 7F,J_—>CJ‘L

1.3 Inversion sequent calculus

Playing around with the calculus above, we notice that some rules are invertible, meaning that
their premises are justified from the conclusio Therefore we can eagerly apply those rules when
doing proof search, without looking back. This reduces the search space considerably, since we
don’t need to backtrack on every rule application, only on the non-invertible ones.

r:0A-B x I-,A>B;- XA 1-:B-L Ct

R L oL
I;Q— ADB I",ADB;,- — C*
054 15,058 QA B -5 C*
R AR i AL
I';Q— AAB I;QAAB— C*
_ R _ R _ L _ L
I-— A I;-—B I5;QA—Ct T7;Q,B— C*
Ir;-— AVB I;-— AVB I;QAVB— C*
- -+
% init # init TR — 1 1L
I;Q—P I;Q,P— C* I50=—T Q0,1 —C*
P¢T- T5Q-5P Q-5 AvB Q-5 1
R Ry 2R, ISR,
I;Q—P I;Q— AVB I5Q— 1
Q-5 cr -,P;Q -5 Ct I, ADB;Q - Ct
— 1 TL — shiftp 3 shifts
I—;Q,17T—C* I;Q,P— C* I;QADB— C*

1.4 Contraction-free sequent calculus (a.k.a. G4ip)

Still we have the problem of needing to keep implications on the left around. By analyzing what
might happen on the left side of an implication more carefully, we can come up with a calculus
where this implicit contraction of implications no longer occurs. This is perfect for proof search and
it gives directly a decision procedure for propositional intuitionistic logic (which is good anyway,
since this is indeed a decidable fragment).

I,A— B Pl LLB—C I,B—C .
I—>A>B LP>B—C '°° T,ToB—C '~
LDSESB—C r—cC , DLDoBE>SB—C _~ IDDESB—E LB—C__
ILDAESB—C ™ T,15B—cC™° ILDVESB—C '° I,DoE)>B—C -

r—A l"—>B/\R I'A,B— C

T—AAB TANE—C

IThe other direction, i.e., the conclusion is justified by the premises, is true for every rule.

r—A o r—B . p A—C T,B—C
r—AVB ' T—AVB " ? [LAVB— C
[y g e
I'—C L
I'T7T—C

1.5 Exercises

The proposition =—(A V =A) was given as an example as to why the rule DL must keep the
implication in its premise when using the restricted sequent calculus.

Task 1. Prove =—(A Vv =A) in G4ip.

Solution 1:
— 1L
1L — 1 PSL
AD1L,A— 1 L L
AAl1-oL—1 Pt AT STt
DDL

-A,(ADL)DL — L
(AV-A)DL— 1L
—)—|—|(A\/—|A)

VvDL
DL

In the lecture notes it is indicated that cut is admissible for the restricted calculuﬂ The proof is
analogous to the one you have already seen, but since less formulas are kept around, some cases
become simpler.

Task 2. Prove thatif ' — A D Band I, A D B — CthenI — Cin the restricted sequent calculus
(consider only the case where the cut formula is principal).

Solution 2: Assume D and & are the following derivations, respectively:

Dy & &

I'A— B ITA>B—A T'—B
r—A>5B K TA>B—c -k
r—A by IHon A > B, O and &;
I'A—C by IH on B, D; and &;
r —C by IH on A and both previous lines

Task 3. Prove the following sequent in G4ip:

— (PO2Q)DRA((PDQ)DSD>(PD>Q)DR

2 Actually, cut is admissible for all the calculi listed here.

3

Solution 3:

POSR(P5Q)550—0 " N
POSR(P->0)>50P->0 —0 2L RP>0>55P>0 —r M
P>5Q) >R (P>50)55(P>0) —R 22 L
Po>Q)DR,(PoQ)>S— (P>Q)DR
(PoQ)DRA((PD2Q)DS)— (PDQ)DR
— (PD2Q)DRA((P>2Q)DS)D(P>Q)DR

DR
AL
DR

	Heyting Arithmetic
	All of the rules in one place!
	Working with these ideas

	Complete induction
	Inequality
	Complete induction

	Warshall algorithm
	All the sequent calculi
	Sequent calculus
	Restricted sequent calculus
	Inversion sequent calculus
	Contraction-free sequent calculus (a.k.a. G4ip)
	Exercises

