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Recitation 4: �anti�ers (2021-02-24)
André Platzer et al

1 �anti�ers

Up to now, we have been vague about what, exactly, our atomic propositions A are representing. In order to discuss
quanti�cation, however, we need to be precise over what, exactly, we are quantifying over. We do this via a new judgment
t : τ, where τ is some to-be-de�ned type. O�entimes, we are interested in some particular type, like the type of natural
numbers or the type of Turing Machines, but the meaning of the ∃ and ∀ connectives are independent of this.
�e rules for verifying these are as follows:

a : A....
A(a) ↑

∀x : τ.A(x) ↑ ∀I
a ∀x : τ.A(x) ↓ t : τ

A(t) ↓ ∀E

t : τ A(t) ↑
∃x : τ.A(x) ↑ ∃I

∃x : τ.A(x) ↓

a : τ A(a) ↓
u

....
C ↑

C ↑ ∃Ea,u

By now, you should be comfortable with erasing the arrows to recover the rules de�ning these connectives for natural
deduction. �e intuition for these rules should be straightforward – to prove that some proposition A(x) is true for all x : τ,
we should be able to derive A(c) true for some arbitrary c : τ. Similarly, we can introduce an existential by demonstrating
some object satisfying the proposition.

Eliminating foralls is similarly simple. To eliminate an existential, however, we must do a li�le more work. If we have
∃x : τ.A(x), then we may not assume anything else about the witness! It must be an object of type τ, and also that it satis�es
A(x), but any other properties must be abstracted out, to be replaced with an arbitrary object with the known properties.

2 Examples with quanti�ers

Consider predicates A(x) and B(x) which depend on x : τ.

Task 1. Show ∀x : τ.A(x) ∧ B(x) ⊃ ∀x : τ.A(x) ∧ ∀x : τ.B(x) true.

Solution 1:

p
∀x : τ.A(x) ∧ B(x) true u : τ

∀EA(u) ∧ B(u) true
∧E1A(u) true
∀Iu

∀x : τ.A(x) true

p
∀x : τ.A(x) ∧ B(x) true v : τ

∀EA(v) ∧ B(v) true
∧E2A(v) true
∀Iv

∀x : τ.B(x) true
∧I

∀x : τ.A(x) ∧ ∀x : τ.B(x) true
⊃Ip

∀x : τ.A(x) ∧ B(x) ⊃ ∀x : τ.A(x) ∧ ∀x : τ.B(x) true

Next, let A(x, y) be a formula with two variables x : τ and y : σ.

Task 2. Show that you can “swap” an existential and universal. Do a veri�cation proof.
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Solution 2:

∃y : τ.∀x : σ.A(x, y) ↓
u

d : τ

∀x : σ.A(x, d) ↓
v

c : σ
A(c, d) ↓ ∀E

A(c, d) ↑
l

∃y : τ.A(c, y) ↑ ∃I

∃y : τ.A(c, y) ↑ ∃Ed,v

∀x : σ.∃y : τ.A(x, y) ↑ ∀I
c

(∃y : τ.∀x : σ.A(x, y)) ⊃ (∀x : σ.∃y : τ.A(x, y)) ↑ ⊃I
u
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Constructive Logic (15-317), Spring 2021
Recitation 7: Sequent Calculus and Cut Elimination (2021-03-17)
André Platzer et al

1 �e Rules

Recall that le� rules correspond to “upside down elimination rules” and that right rules correspond to introduction rules.

Γ,A ∧ B,A =⇒ C
Γ,A ∧ B =⇒ C

∧L1
Γ,A ∧ B,B =⇒ C
Γ,A ∧ B =⇒ C ∧L2

Γ =⇒ A Γ =⇒ B
Γ =⇒ A ∧ B ∧R

Γ,A ∨ B,A =⇒ C Γ,A ∨ B,B =⇒ C
Γ,A ∨ B =⇒ C ∨L Γ =⇒ A

Γ =⇒ A ∨ B
∨R1

Γ =⇒ B
Γ =⇒ A ∨ B ∨R2

No >L. Γ =⇒ >
>R

Γ,⊥ =⇒ C ⊥L No ⊥R.

Γ,A ⊃ B =⇒ A Γ,A ⊃ B,B =⇒ C
Γ,A ⊃ B =⇒ C ⊃L

Γ,A =⇒ B
Γ =⇒ A ⊃ B ⊃R

Γ,A =⇒ A id

2 Some Example Proofs

Task 1. · =⇒ A ⊃ A

Solution 1:
A =⇒ A id

· =⇒ A ⊃ A ⊃ R

Task 2. · =⇒ A ∧ B ⊃ B ∧ A

Solution 2:
A ∧ B,B =⇒ B id

A ∧ B =⇒ B ∧L2
A ∧ B,A =⇒ A id

A ∧ B =⇒ A
∧L1

A ∧ B =⇒ B ∧ A ∧R

· =⇒ A ∧ B ⊃ B ∧ A ⊃ R

Task 3. · =⇒ (A ⊃ (B ∧ C)) ⊃ (A ⊃ B)

Solution 3:

(A ⊃ (B ∧ C)),A =⇒ A id
(A ⊃ (B ∧ C)),A,B ∧ C,B =⇒ B id

(A ⊃ (B ∧ C)),A,B ∧ C =⇒ B
∧L1

(A ⊃ (B ∧ C)),A =⇒ B ⊃ L

(A ⊃ (B ∧ C)) =⇒ (A ⊃ B) ⊃ R

· =⇒ (A ⊃ (B ∧ C)) ⊃ (A ⊃ B) ⊃ R

Task 4. · =⇒ (A ⊃ B ⊃ C) ⊃ B ⊃ A ⊃ C
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Solution 4:

A ⊃ B ⊃ C,B,A =⇒ A id
A ⊃ B ⊃ C,B,A,B ⊃ C =⇒ B id A ⊃ B ⊃ C,B,A,B ⊃ C,C =⇒ C id

A ⊃ B ⊃ C,B,A,B ⊃ C =⇒ C ⊃L

A ⊃ B ⊃ C,B,A =⇒ C ⊃L

A ⊃ B ⊃ C,B =⇒ A ⊃ C ⊃R

A ⊃ B ⊃ C =⇒ B ⊃ A ⊃ C ⊃R

· =⇒ (A ⊃ B ⊃ C) ⊃ B ⊃ A ⊃ C ⊃R

Task 5. · =⇒ (A ⊃ B) ⊃ ((A ∧ C) ⊃ (B ∧ C))

Solution 5:

(A ⊃ B), (A ∧ C),A =⇒ A id

(A ⊃ B), (A ∧ C) =⇒ A
∧L1 (A ⊃ B), (A ∧ C),B =⇒ B id

(A ⊃ B), (A ∧ C) =⇒ B ⊃ L
(A ⊃ B), (A ∧ C),C =⇒ C id

(A ⊃ B), (A ∧ C) =⇒ C
∧L2

(A ⊃ B), (A ∧ C) =⇒ B ∧ C ∧R

(A ⊃ B) =⇒ ((A ∧ C) ⊃ (B ∧ C)) ⊃ R

· =⇒ (A ⊃ B) ⊃ ((A ∧ C) ⊃ (B ∧ C)) ⊃ R

3 Cuts

As a reminder, the cut theorem is as follows: If Γ =⇒ A and Γ,A =⇒ C, then Γ =⇒ C, where A and C are arbitrary
propositions.
In class, we saw portions of the proof of admissibility for the cut rule.

Task 6. Finish the case for the proof of admissibility of cut where E ends in ⊃ R, and A is not the principal formula of the
last inference in E.

Solution 6: We have that
D = Γ =⇒ A

and

E =

E1
Γ,A,C1 =⇒ C2

Γ,A =⇒ C1 ⊃ C2
⊃ R

C = C1 ⊃ C2

Γ,C1 =⇒ A

Γ,C1 =⇒ C2

Γ =⇒ C1 ⊃ C2

this case
weakening ofD
IH on A, weakening ofD, and E1

by rule ⊃ R on above

Task 7. What would the derivationsD and E look like if we wanted to do the same case as above, but with ⊃ L instead of
⊃ R as the last derivation in E?

Solution 7:
D = Γ =⇒ A

E =

E1
Γ′,B1 ⊃ B2,A =⇒ B1

E2
Γ′,B1 ⊃ B2,A,B2 =⇒ C

Γ′,B1 ⊃ B2,A =⇒ C ⊃ L
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