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1 Why another logic?

Around a century ago, some people became intrigued about the way we reason and get conclusions from assump-
tions, particularly in the field of mathematics1. There were (and still are) many discussions on what constitutes
a “correct” reasoning, which steps can one take without compromising an argument, and what it means for
something to be true. But one thing that people usually accept fairly naturally is that, for every proposition A,
either A holds or ¬A holds. This is the so-called law of excluded middle. Given this principle, a proof that it is
not the case that ¬A (i.e., a proof of ¬¬A) can be considered as evidence for A (if the disjunction is true and we
know that one disjunct does not hold, then the other one must be true). This principle is the core of proofs by
contradiction where, to prove a statement, you assume the contrary of the statement and arrive at an impossible
situation. Another proof that relies heavily on the law of excluded middle is the following:

Theorem 1. There exist two irrational numbers x and y such that xy is a rational number.

Proof. Take the number
√

2
√

2. We do not know if this is a rational or irrational number, but the law of excluded
middle tells us it must be one or the other.
Case 1:

√
2
√

2 is rational. Then choose x = y =
√

2 and the theorem holds.
Case 2:

√
2
√

2 is irrational. Then choose x =
√

2
√

2 and y =
√

2. Therefore xy = 2 and the theorem also holds. �

In this proof, we know that the numbers x and y “exist,” but we don’t have any way of computing them!
Some were not happy about this situation, and they decided to come up with new rules for the game. They
were the constructivists (or intuitionists). They decided that, in their logic, the truth of a judgment is solely
determined by an evidence (or proof) of that judgment. Not a negation of its negation, not the judgment painted
in blue, but the judgment. It can be thought of as a proof-centered logic. In such a logic, we cannot say “either A
holds or ¬A holds” unless we have a proof of one or the other. It turns out that proofs become really interesting
and informative, and can even be interpreted as algorithms (spoiler alert!). Mathematically, constructive proofs
represent the construction of objects (hence the name)2. A real constructive proof of the theorem above would
actually show how to obtain values for x and y which satisfy the property.

In this class, we’ll explore different formal systems which capture aspects of constructive reasoning. By making
these ideas formal, we’ll be able to analyze the structure of proofs, discover their computational content, show
that principles like the axiom A ∨ ¬A are or are not justified, and determine how to effectively search for proofs.

2 The System of Natural Deduction

In order to build proofs we need to use a proof calculus3. There are many proof calculi with widely varying
notations, but the ones we will encounter can all be characterized either as natural deduction or sequent calculus.
We’ll be starting with the former, but both share the same building blocks: propositions, judgments, and inference
rules.

First and foremost, we have the notion of judgment. A judgment is simply an assertion. For example, we
could define a judgment form M nat which asserts that M is a natural number. Then 4 nat and Cat nat are both
judgments, although only one of them can be made evident. We can define judgments that make assertions about
any sort of thing, but in natural deduction we will be judging propositions.

A proposition is a logical statement like >, A∧B, or A ∨ C ⊃ B built up from connectives (like >, ∧ and ⊃). In
natural deduction, we make assertions about propositions with the judgment A true, which asserts (unsurprisingly)
that the proposition A is a true statement. In the future, we will see other judgments which describe propositions,

1For a nice and fun account of the history of logic, I absolutely recommend Logicomix.
2Actually, there is a whole field named constructive mathematics trying to express all mathematics in terms of constructive proofs.
3Around here, a “calculus” is just a system for calculating, the differential and integral calculi being the most well-known examples.
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such as A false. (As André mentioned, we might also consider A prop to be a judgment, which asserts that A is a
proposition.)

Now that we can write down the judgment A true, we want to be able to establish that the judgment is in
fact evident, that is, to give a justification that it holds. For this we introduce the notion of a proof. To start with,
we specify a collection of inference rules, a set of basic reasoning principles from which proofs are constructed.
These are analogous to the axioms of classical mathematical logic. (In the natural deduction setting, the word
axiom usually refers to an inference rule with zero premises, such as >I.) For example, we have the rules for the
connective ∧:

A true B true
∧IA∧B true

A∧B true
∧E1A true

A∧B true
∧E2B true

An inference rule consists of a set of premise judgments and a single conclusion judgment, along with a label:

Premises→
Conclusion→

A true B true
∧IA∧B true

← Label

This rule can be read as “from A true and B true, conclude A∧B true”. The letters A and B are schema variables:
they can replaced with anything and the rule is still valid. For example,

⊥ true the moon is green true
∧I

⊥∧ the moon is green true

is a valid instance of the ∧I rule.
In general, each connective comes with introduction and elimination rules: the introduction rules are used to

establish the truth of a proposition using that connective, while the elimination rules are used to derive facts from
such a proposition. In the case of the connective ∧, ∧ I is an introduction rule (“from A true and B true, conclude
A∧B true”), while ∧E1 (“from A∧B true, conclude A true”) and ∧E2 (“from A∧B true conclude B true”) are
elimination rules. The rules for ∧match our intuition about the meaning of ∧:

A∧B true is provable iff4 A true is provable and B true is provable.

Note the proof-centered meaning explanation! In the case of∧, this is uncontroversial, but we will see that claiming

A ∨ B true is provable iff either A true is provable or B true is provable.

has interesting consequences.
Observe also that the introduction and elimination rules “fit together:” since we put in A true and B true to

get A∧B true (via ∧ I), this is exactly what we can get out (via ∧E1 and ∧E2). We will make this idea of “fitting
together” more precise soon.

Inference rules may introduce assumptions, for example in the introduction rule ⊃I for implication:

u
A true
...

B true
⊃Iu

A ⊃ B true

A ⊃ B true A true
⊃EB true

Here, the premise of the ⊃I rule is a hypothetical judgment, a judgment in the presence of hypotheses. To assert the
hypothetical judgment

A true
...

B true

is to assert that B true holds supposing that A true holds. (This hypothetical judgment can be written more
compactly as A true ` B true.) In the ⊃I rule, we use the label u to name the assumption A true. Once we start
construct ing proofs from inference rules, we will use the label u to mark where that assumption is used.

As a general design principle, we try to mention only one connective in a particular rule. When we want to
define a connective in terms of others, we simply define it as shorthand, rather than by giving rules. For example,

4“if and only if”
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we define ¬A to mean A ⊃ ⊥. By doing this, we avoid cluttering our system with redundant constructs, and we
can be sure that none of our connectives are circularly defined in terms of each other. Moreover, this makes the
system more modular, in the sense that we can study connectives in isolation or in various combinations.

Finally, we build proofs (or proof trees) by composing inference rules. For example, we can prove A ⊃ A∧A true
and A∧A ⊃ A true:

u
A true

⊃Iu
A ⊃ A true

v
A true

v
A true

∧IA∧A true
⊃Iv

A ⊃ A∧A true

Notice that assumptions can be used more than once (they can also be used zero times!). We know that these
proofs are complete because there are no floating assumptions left over: every judgment in the tree is justified
either by an inference rule or by an assumption. (In our notation, this is the same as saying every judgment has a
line on top.) In contrast, here is an incomplete proof of B ⊃ B∧C true:

x
B true C true

∧IB∧C true
⊃Ix

B ⊃ B∧C true

This proof is incomplete because the assumption C true is unjustified. (It is, however, a complete proof of the
hypothetical judgment C true ` B ⊃ B∧C true.)

There can be different proofs of the same judgment. For example, these are two proofs of A∧A ⊃ A true:

w
A∧A true

∧E1A true
⊃Iw

A∧A ⊃ A true

w
A∧A true

∧E2A true
⊃Iw

A∧A ⊃ A true

Here we begin to see the importance of labeling our inference rules: without labels, we wouldn’t be able to
distinguish the two proofs. Likewise, here we have two proofs that A ⊃ (A ⊃ A) true, which are distinguishable
only by assumption labels:

u
A true

⊃Iv
A ⊃ A true

⊃Iu
A ⊃ (A ⊃ A) true

v
A true

⊃Iv
A ⊃ A true

⊃Iu
A ⊃ (A ⊃ A) true

Our reasons for distinguishing these will become more clear as we explore the computational aspects of constructive
logic.

This calculus is called “natural deduction” because (according to its inventor, Gerhard Gentzen) it is the
“natural” way of proving things, as opposed to earlier axiomatic systems. Indeed, looking at the intuitive
meanings of connectives, the rules come rather naturally. For some purposes, however, such as proof search and
unprovability results, there are better options, which we will see later on.

Exercise: Prove the law of non-contradiction ¬(A∧¬A).

3 Examples

Question: Prove A∧B ⊃ B true.

u
A∧B true

∧E2B true
⊃Iu

A∧B ⊃ B true

Question: Prove A∧B ⊃ B∧A true.

u
A∧B true

∧E2B true

u
A∧B true

∧E1A true
∧IB∧A true

⊃Iu
A∧B ⊃ B∧A true
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Question: Prove A∧(A ⊃ B) ⊃ B true.

u
A∧(A ⊃ B) true

∧E2A ⊃ B true

u
A∧(A ⊃ B) true

∧E1A true
⊃EB true

⊃Iu
A∧(A ⊃ B) ⊃ B true

Question: Prove A∧(A ⊃ B)∧(B ⊃ C) ⊃ C true.

u
A∧(A ⊃ B)∧(B ⊃ C) true

∧E2(A ⊃ B)∧(B ⊃ C) true
∧E2B ⊃ C true

u
A∧(A ⊃ B)∧(B ⊃ C) true

∧E2(A ⊃ B)∧(B ⊃ C) true
∧E1A ⊃ B true

u
A∧(A ⊃ B)∧(B ⊃ C) true

∧E1A true
⊃EB true

⊃EC true
⊃Iu

A∧(A ⊃ B)∧(B ⊃ C) ⊃ C true

Question: Prove A ⊃ (B ⊃ A) true.

u
A true

⊃Iv
B ⊃ A true

⊃Iu
A ⊃ (B ⊃ A) true

4 Turnstile Notation

Our natural deduction rules can also be written in a form involving turnstiles and contexts. Instead of having
hypotheses be represented vertically above the conclusions they can be used to derive, they are simply put inside
the context, which we represent in our rules with the symbol Γ. The context is simply an unordered list of
hypotheses. We may refer to these hypotheses as antecedents.

A hypothetical judgment has the form Γ ` A. The judgment on the right side of the turnstile is often referred to as
the succedent of the hypothetical judgment.

All of our existing natural deduction rules have a corresponding representation with turnstile notation, as shown
below.

Γ ` Atrue Γ ` Btrue
Γ ` A ∧ Btrue ∧I Γ ` A ∧ B true

Γ ` A true
∧E1

Γ ` A ∧ B true
Γ ` B true ∧E2

Γ,A true ` B true
Γ ` A ⊃ B true ⊃ I Γ ` A ⊃ B true Γ ` A true

Γ ` B true ⊃ E

Γ ` A true
Γ ` A ∨ B true

∨I1
Γ ` B true

Γ ` A ∨ B true ∨I2
Γ ` A ∨ B true Γ,A true ` C true Γ,B true ` C true

Γ ` C true ∨E

Γ ` > true >I Γ ` ⊥ true
Γ ` C true ⊥E

There is one more rule that exists when using the turnstile notation, however. Without it, we are not able to
complete most proofs. For example, if using this notation to prove A ∧ B ⊃ A:

A ∧ B true ` A ∧ B true
A ∧ B true ` A true ∧E2

` A ∧ B ⊃ A true ⊃ I

Task 1. The judgment A ∧ B true ` A ∧ B true clearly makes sense, but none of the existing rules give us a way to
justify this. What rule do we need to be able to finish off this proof, then?

Solution. We need a rule which allows us to conclude that Γ ` J, if J ∈ Γ. It looks like this:

J ∈ Γ

Γ, J true ` J true
hyp
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5 Classical vs Constructive Logic

Theorem 1 is an example of an informal proof using methods of classical logic, that can not be carried out
constructively. We look more closely at the rules of inference that distinguish classical and constructive logic.

Recall the following proof rule from the natural deduction calculus:

⊥ true
⊥EA true

This rule is also known as the principle of explosion or ex falso sequitur qoudlibet. Removing this from the natural
deduction calculus we obtain minimal logic. Let’s think about this proof rule. It tells us that if we have a proof
of false, then we have a proof of anything we might come up with. However trying to prove ⊥ true is hard and
should ideally be impossible. A slight moficiation of this rule is much more useful. Instead of asking that ⊥ true
be proved unconditionally, we require it to be proved under the assumption that ¬A true. This is the usual thing
we do, when we carry out a proof by contradiction: Assume that A is false and derive a contradiction (⊥) to
conclude that A must have been true to begin with. This significant strengthening of the rule is encapsulated in
the following proof rule:

u
¬A true
...

⊥ true RAAu
A true

N.B. This proof rule is only valid classically. Indeed the addition of this proof rule is exactly what distinguishes
classical logic from constructive logic. This proof rule is know as reductio ad absurdum.

Remember that we are under no obligation to use the labelled assumption ¬A true at all. In particular the proof
rule⊥E is easily derivable from RAA. Another way to say this is that classical logic is obtained from minimal logic
by adding the proof rule RAA and classical logic extends constructive logic.

5.1 Proofs by contradiction

Note that in informal mathematics we frequently present proofs as proofs by contradiction, when that is not strictly
necessary, in order to aid readability. When we are doing constructive mathematics however it is important to be
aware of the difference between a proof of negation and a proof by contradiction.

To illustrate the difference on an example consider the following two proofs:

Theorem 2. There is a non-computable real number.

Proof. For a contradiction suppose not. Then every real number is non-computable. Because there are only
countably many Turing machines, there are only countably many real numbers. This is not true and we have thus
obtained a contradiction. �

This is a genuine proof by contradiction. Let B be the set of computable real numbers. Then schematically this
proof could look something like this:

u
(∀x ∈ R x ∈ B) true
|R| = |B| true (|R| , |B|) true

¬E
⊥ true RAAu

(∃x ∈ R \ B) true

(Note that while this proof is not constructive, taking a closer look at the diagonal argument involved to prove
|R| , |B| yields a constructive proof of the same fact.)

Theorem 3. The number log2(3) is irrational.

Proof. For a contradiction suppose not. Then there are natural numbers a, b > 0 such that log2(3) = a
b . By taking

the exponential on both sides we get 3b = 2a. This is a contradiction, since the left hand side is odd and the right
hand side is even. �
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This is not a proof by RAA. It is really a proof of a negation. Remember that a number is irrational, if it is
not rational. Since ’x not rational’ is for us defined as ’x rational entails false’, this is really what the theorem is
claiming in the first place. Schematically the proof could look something like this:

u
(log2(3) ∈ Q) true

...
⊥ true

¬I(¬ log2(3) ∈ Q) true

Note that here we use the negation introduction rule, rather than RAA.
In particular, although the proof rule RAA is not permitted in constructive mathematics, this does not mean

that any proof presented as a proof by contradiction in natural language is automatically non-constructive.

5.2 Double negation elimination

Another equivalent way to obtain classical logic from minimal logic is to add the double negation elimination
proof rule:

¬¬A true DNEA true
Indeed we can derive DNE from RAA in minimal logic as follows:

u
¬A true ¬¬A true

¬E
⊥ true RAAu
A true

Conversely we can also deduce RAA from DNE in minimal logic:
u

¬A true
...

⊥ true
¬Iu

¬¬A true DNEA true
While double negation elimination is not part of constructive logic, triple negation elimination ¬¬¬A ` ¬A is

derivable.
Exercise: Prove that triple negation elimination is derivable in constructive logic.

5.3 Law of the excluded middle

There is another important way to capture the distinction between classical and constructive logic that we have
already seen in Theorem 1. The law of the excluded middle. Written as a proof rule this takes the form:

LEMA∨¬A true

In the proof of the theorem, we assumed that a number (in particular
√

2
√

2) is either rational or irrational. This is
not the case in the constructive setting. Again adding LEM to minimal logic we obtain classical logic. (LEM is also
called tertium non datur.)

Interestingly the double negation of LEM is provable in intuitionistic logic:
v

A true
∨I(A∨¬A) true

u
¬(A∨¬A) true

¬E
⊥ true

¬Iv
¬A true

∨ I(A∨¬A) true
u

¬(A∨¬A) true
¬E

⊥ true
¬Iu

¬¬(A∨¬A) true

Exercise: Prove that in constructive logic LEM and DNE are interderivable. (Note that over minmal logic LEM
is weaker than DNE.)
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