
ConstLog: Constructive Logic

Lecture Notes on
Unification

Frank Pfenning André Platzer

Carnegie Mellon University ‖ Karlsruhe Institute of Technology
Lecture 19

1 Introduction

In this lecture we take the essential step that makes the exact choice of goal and rule in-
stantiation explicit in the operational semantics of logic programming. This consists of
describing an algorithm for a problem called unification which, given two terms t and s,
tries to find a substitution θ for its free variables such that tθ = sθ, if such a substitution
exists. Of course, one needs to precise about how θ is computed, because, as is most ob-
vious via answer set substitutions, this determines the result of the computation. Recall
that we write tθ for the result of applying the substitution θ to the term t.

These lecture notes are conceptual of prior lecture notes [Pfe06, Sch12].

2 Using Unification in Proof Search

Before we get to specifics of the algorithm, we consider how we use unification in proof
search. Let us reconsider the (by now tired) example of unary addition

plus(0, N,N)
pz

plus(M,N,P)

plus(s(M), N, s(P))
ps

and an atomic goal such as
plus(s(0), s(s(0)), P).

Clearly the conclusion of the first rule does not match this goal, but the second one
does. What question do we answer to arrive at this statement?

The first attempt might be: “There is an instance of the rule such that the conclusion
matches the goal.” When we say instance we mean here the result of substituting terms for

CONSTLOG LECTURE NOTES 20.7.2023 FRANK PFENNING , ANDRÉ PLATZER

http://lfcps.org/course/constlog.html

L19.2 Unification

the variables occuring in a rule, proposition, or term. We can see that this specification
is not quite right: we need to instantiate the goal as well, since P must have the form
s(P1) for some as yet unknown P1. The subgoal in that case would be plus(0, s(s(0)), P1)
according to the rule instantiation with 0 for M , s(s(0)) for N , and P1 for P .

The second attempt would therefore be: “There is an instance of the rule and an instance
of the goal such that the two are equal.” This does not quite capture what we need either.
For example, substituting s(s(s(s(0)))) for P in the goal and s(s(s(0))) for P in the rule,
together with the substitution for M and N from above, will also make the goal and
conclusion of the rule identical, but is nonetheless wrong. The problem is that it would
overcommit: using P1 for P in the rule, on the other hand, keeps the options open. P1

will be determined later by search and other unifications. In order to express this, we
define that t1 is more general than t2 if t1 can be instantiated to t2.

The third attempt is therefore: “Find the most general instance of the rule and the goal
so that the conclusion of the rule is equal to the instantiated goal.” Phrased in terms of
substitutions, this says: find θ1 and θ2 such that P ′θ1 = Pθ2, and any other common
instance of P ′ and P is an instance of P ′θ1.

In terms of the algorithm description it is more convenient if we redefine the problem
slightly in this way: “First rename the variables in the rule so that they are disjoint from
the variables in the goal (standardize apart). Then find a single most general substitution θ
that unifies the renamed conclusion with the goal.” Here, a unifying substitution θ is most
general if any other unifying substitution is an instance of θ.

In the remainder of the lecture we will make these notions more precise and present
an algorithm to compute a most general unifier.

Notation: In this lecture, we follow the general convention in logic that logical vari-
ables are called x, y, z while nullary function symbols are called a, b, c. Function sym-
bols are called f, g, hwhile predicate symbols are called p, q, r. Recall that Prolog has the
convention of starting variables with upper-case letters X,Y, Z while starting all func-
tion and predicate symbols including nullary with lower-case letters a, b, c, f, g, h, p, q, r.

3 Substitution

A substitution σ is a function that replaces variables by terms. When applied to a term,
σ uniformly replaces all the variables it affects in the term by their replacement but
leaves the term unchanged otherwise. Different notations exist in the literature. In
this lecture we adopt the notation tσ for the result of applying substitution σ to term t,
instead of σ(t).

Definition 1 (Substitution). A substitution is a homomorphism on terms and finitely
supported, i.e., a function σ : Term→ Term on the set of terms such that

f(t1, . . . , tn)σ = f(t1σ, . . . , tnσ) for all function symbols f and terms ti
σ = id for almost all variables

CONSTLOG LECTURE NOTES FRANK PFENNING , ANDRÉ PLATZER

Unification L19.3

That is, the domain dom(σ) = {x : xσ 6= x} of all variables that are affected by σ is
finite.

The effect of a substitution is uniquely determined already by describing its effect on
the finitely many variables that it affects. A substitution σ can be represented by listing
the replacements for each of the variables in domσ. The most common notation for the
substitution σ that replaces x by r and simultaneously replaces y by s and z by t and
leaves all other variables unchanged since dom(σ) = {x, y, z}, is denoted:

(r/x, s/y, t/z)

This substitution is usually pronounced “r for x, s for y, and t for z”. It is enough
to specify this substitution like that, because its effect on any other term is uniquely
determined by Def. 1. Of course, it does not make sense to mention a replacement for x
multiple times such as in (r/x, s/x) since that ill-formed representation does not give a
function.

Substitutions can be extended to work also on logical formulas. For example, p(t)σ =
p(tσ) for all predicate symbols p. But more attention is needed with quantifiers to
avoid capture of variables such as when using the above substitution on the formula
(∀xp(x))∧(∀rq(y)). Quantifiers do not occur during proof search in Prolog, since that is
all about unifying a goal p(t) with a corresponding clause p(s), possibly with multiple
arguments.

4 Composing Substitutions

Since substitutions are functions, they can be composed and it is easy to see that their
composition is still a substitution.

Theorem 2 (Composition of substitutions). The composition σ ◦ τ of substitution σ af-
ter substitution τ is a substitution. For compatibility with the postfix notation for applying
substitutions, it is denoted τσ so literally written as σ after τ .

t(τσ) = t(σ ◦ τ) = (tτ)σ

Proof: Both σ and τ only affect finitely many variables, and so will their composition.

x(τσ) = x(σ ◦ τ) = σ(τ(x)) = (xτ)σ

Since both σ and τ leave function symbols unchanged and work homomorphically on
the arguments, the same condition will be satisfied when applying σ after τ .

f(t1, . . . , tn)(τσ) = f(t1(τσ), . . . , tn(τσ))
IH
= f((t1τ)σ, . . . , (tnτ)σ)

= f(t1τ, . . . , tnτ)σ = (f(t1, . . . , tn)τ)σ

2

CONSTLOG LECTURE NOTES FRANK PFENNING , ANDRÉ PLATZER

L19.4 Unification

A particularly useful type of substitutions are those that are idempotent, i.e., σ ◦ σ =
σσ = σ, which means that applying the substitution twice has the same effect as apply-
ing it only once. Substitutions in which the variable they substitute occurs in its own
replacement will not be idempotent so that things change again when they are applied
multiple times. For example, applying (f(x)/x) twice will turn g(x) into g(f(f(x)))
while applying it once will only give g(f(x)). Idempotent substitutions are easier to
work with, because we do not have to pay attention how often we apply it to a term.

A representation of the composed substitution τσ can be computed from the repre-
sentations of the substitutions σ and τ . If domσ∩dom τ = ∅, the composed representation
is easier just by applying the subsequent substitution σ already to the replacement list
of τ :

τσ = (tσ/x : t/x ∈ τ) ∪ σ

where ∪ denotes the union of the representations of a substitution. If domσ and dom τ
overlap, then the replacements that σ does to variables of dom τ will have to be dropped
during ∪. Those variables x will already have been replaced by (τx) by the time σ is
applied, so are already covered on the left. Fortunately, Prolog unification during proof
search works on clauses that have already been renamed to use disjoint variable names
for different clauses as well as different for each use of the same clause (standardize
apart). Such disjointness conditions can be helpful. The set of all variables occurring in
the substitution terms is the codomain cod(θ) =

⋃
x∈dom(θ) FV(xθ). By FV(t) we denote

the set of all free variables of term t, which are all variables in t.1

If domσ∩dom τ = ∅, the above representation of the composition τσ can be obtained
step by step when considering the elements of the list representing τ , where (·) is the
empty substitution:

(t/x, τ)σ = (tσ/x, τσ)

(·)σ = σ

5 Unifiers

Definition 3 (Unifier). The substitution σ is a unifier for the terms s and t if sσ = tσ.
Two terms s and t are called unifiable if a unifier σ exists.

Unifiers are not unique. For example, both σ1 = (h(a)/x, z/y) and σ2 = (h(a)/x, y/z)
unify

f(x, g(y)) and f(h(a), g(z)) (1)

Neither of those unifiers is inherently better than the other. In contrast, σ3 = (h(a)/x, b/y, b/z)
also unifies (1). But σ3 is worse than σ1 and σ2, because σ3 is unnecessarily specific since

1Representations of compositions σθ of representations σ and θ of substitutions are conceptually partic-
ularly easy when dom(θ) ∩ cod(θ) = ∅ for all the relevant substitutions (which implies idempotence)
and dom(σ) ∩ (dom(θ) ∪ cod(θ)) = ∅, since there is no overlapping effect in that case [Pfe06].

CONSTLOG LECTURE NOTES FRANK PFENNING , ANDRÉ PLATZER

Unification L19.5

it specializes both variable y and variable z to the nullary constant symbol b. After hav-
ing applied σ1 to unify the terms in (1), we can still obtain the result of using the more
special unifier σ3 by subsequently instantiating y and z to b.

Definition 4 (Most-general unifier). A substitution µ is a most-general unifier for the
terms s and t iff µ unifies s and t and

for all unifiers σ of s and t there is a substitution σ′ such that σ = µσ′ = σ′ ◦ µ

In other words, most-general unifiers are exactly the maximal elements with respect to
the order: σ ≺ µ iff there is a σ′ such that σ = σ′ ◦ µ.

By this definition, σ3 is certainly not a most-general unifier for (1) but can still be
represented as σ3 = (b/y, b/z) ◦ σ1. Likewise, σ2 = (y/z) ◦ σ1. Since that, indeed, holds
for all other unifiers of (1), it turns out that σ1 is a most-general unifier for (1).

Most-general unifiers are still not unique, because σ2 also is a most-general unifier of
(1) as well. After establishing that σ1 is a most-general unifier for (1), which requires
more thought, it is easy to see that σ2 is a most-general unifier using σ1 = (z/y) ◦ σ2.
Every unifier σ already has a substitution σ′ such that σ = σ′ ◦ σ1 since σ1 is a most-
general unifier. Thus, every unifier σ also has a substitution σ′ ◦ (z/y) such that

(σ′ ◦ (z/y)) ◦ σ2 = σ′ ◦ ((z/y) ◦ σ2) = σ′ ◦ σ1 = σ

Yet, when we have two most-general unifiers, they cannot be too far apart either. If
we have two most-general unifiers µ, µ′, then we can get from µ to µ′ by composing
with some σ′ (µ′ = σ′ ◦ µ), and we can, conversely, also get from µ′ to µ with some σ
(µ = σ ◦ µ′). Neither this σ nor this σ′ can possibly substitute any variable by another
term that isn’t itself a variable. Suppose σ did replace some x by some function term
f(e), then f will always remain there (if x occurs in the input terms s and t at all) so
the substitution σ′ can never undo that effect of adding an f . It, thus, turns out that
the most-general unifier is almost unique. The most-general unifier of a set of terms is
unique up to variable renaming:

Lemma 5. If µ, µ′ are most-general unifiers for the terms s and t, then there is a variable
renaming σ such that µ = σ ◦ µ′. A variable renaming is a substitution whose only effect is
to replace variables by variables, not by arbitrary terms, and that, moreover, never renames two
different variables to the same variable (which could never be undone by another substitution).

6 Unification

As usual in this class, we present the algorithm to compute a most general unifier as a
judgment, via a set of inference rules. The judgment has the form t

.
= s | θ, where we

think of t and s as inputs and a most general unifier θ as the output. We read t .= s | θ as
“t unifies with s under θ”. In order to avoid the n-ary nature of the list of arguments, we
will have an auxiliary judgment t .

= s | θ for sequences of terms t and s. Notions such

CONSTLOG LECTURE NOTES FRANK PFENNING , ANDRÉ PLATZER

L19.6 Unification

as application of substitution are extended to sequences of terms in the obvious way.
We use (·) to stand for an empty sequence of terms (as well as the empty substitution,
which is a sequence of term and variable pairs). We will use boldface letters to stand
for sequences of terms.

We first consider function terms and term sequences.

t
.
= s | θ

f(t)
.
= f(s) | θ (·) .= (·) | (·)

t
.
= s | θ1 tθ1

.
= sθ1 | θ2

(t, t)
.
= (s, s) | θ1θ2

Observe how the most-general unifier θ of t .= s from the left premise is already applied
to the sequence on the right. Second, the cases for variables.

x
.
= x | (·)

x /∈ FV(t)

x
.
= t | (t/x)

t = f(t), x /∈ FV(t)

t
.
= x | (t/x)

The condition that t = f(t) in the last rule (i.e., that the term t begins with a function
symbol f) ensures that it does not overlap with the rule for x .

= t. The condition x /∈
FV(t) in the last two rules also ensures that they do not overlap with the rule for x .

= x.
The condition that x /∈ FV(t) is necessary because, for example, the two terms x and
f(x) do not have unifier: no matter what, the substitution f(x)θ will always have one
more occurrence of f than xθ and hence the two cannot be equal. Observe how this
relates to the fact that the substitution f(x)/x that we would otherwise read of from the
rule for x .

= f(x) is not idempotent since its replacement of x mentions x again.
The other situations where unification fails is an equation of the form f(t) = g(s)

for two different function symbols f 6= g, and for two sequences of terms of unequal
length. The latter can happen if function symbols are overloaded at different arities, in
which case failure of unification is the correct result.

Because of the so-called occurs check x 6∈ FV(t) whenever introducing a substitution
t/x, the above rules will only ever create substitutions that are idempotent, which can be
shown by a straightforward induction. Furthermore, the only place where substitutions
are merged is the rule for (t, t)

.
= (s, s) | θ1θ2. By the occurs check, no variable in

dom(θ1) will occur in its replacement. Consequently, no variable from dom(θ1) will
occur in tθ1 or sθ1 so also not in the right premise tθ1

.
= sθ1 | θ2 nor its unifier θ2. Thus,

the composition θ1θ2 in the conclusion (t, t)
.
= (s, s) | θ1θ2 will be for substitutions

with disjoint domains dom(θ1) ∩ dom(θ2) = ∅ and is, thus, straightforward on their
representations.

7 Soundness

There are a number of properties we would like to investigate regarding the unification
algorithm proposed in the previous section. In today’s lecture we will look at the first
property of soundness, that is, we would like to show that the substitution θ is indeed a
unifier. If the judgment t .= s | θ holds, then, indeed, applying the resulting substitution
θ to t gives the exact same term as applying the substitution θ to s does.

CONSTLOG LECTURE NOTES FRANK PFENNING , ANDRÉ PLATZER

Unification L19.7

Theorem 6 (Soundness). If t .= s | θ then tθ = sθ.

Proof: Since the rule for f(t) .
= f(s) | θ with function symbol applications reduces

unification to unification of a sequence of terms, we need to generalize the induction
hypothesis to cover the auxiliary unification judgment on term sequences.

(i) If t .= s | θ then tθ = sθ.

(ii) If t .
= s | θ then tθ = sθ.

The proof proceeds by mutual induction on the structure of the deduction D of t .
= s

and E of t .
= s. This means that if one judgment appears in the premiss of a rule for the

other, we can apply the appropriate induction hypothesis.
In the proof below we will occasionally refer to equality reasoning, which refers to

properties of equality in our mathematical language of discourse, not properties of the
judgment t .= s. There are also some straightforward lemmas we do not bother to prove
formally, such as t(s/x) = t if x /∈ FV(t).

Case: D =

E
t
.
= s | θ

f(t)
.
= f(s) | θ

where t = f(t) and s = f(s).

tθ = sθ By IH(ii) on E
f(t)θ = f(s)θ By definition of substitution

Case: D =
(·) .= (·) | (·)

where t = s = (·) and θ = (·).

(·)θ = (·)θ By equality reasoning

Case: E =

D1

t1
.
= s1 | θ1

E2
t2θ1

.
= s2θ1 | θ2

(t1, t2)
.
= (s1, s2) | θ1θ2

where t = (t1, t2), s = (s1, s2) and θ = θ1θ2.

t1θ1 = s1θ1 By IH(i) on D1

(t1θ1)θ2 = (s1θ1)θ2 By equality reasoning
t1(θ1θ2) = s1(θ2θ2) By substitution composition (Theorem 2)
(t2θ1)θ2 = (s2θ1)θ2 By IH(ii) on E2
t2(θ1θ2) = s2(θ1θ2) By substitution composition
(t1, t2)(θ1θ2) = (s1, s2)(θ1θ2) By defn. of substitution

Case: D =
x
.
= x | (·)

where t = s = x and θ = (·).

x(·) = x(·) By equality reasoning

CONSTLOG LECTURE NOTES FRANK PFENNING , ANDRÉ PLATZER

L19.8 Unification

Case: D =
x /∈ FV(s)

x
.
= s | (s/x)

where t = x and θ = (s/x).

x(s/x) = s By defn. of substitution
= s(s/x) Since x /∈ FV(s)

Case: D =
t = f(t), x /∈ FV(t)

t
.
= x | (t/x)

where s = x and θ = (t/x).

t(t/x) = t Since x /∈ FV(t)
= x(t/x) By defn. of substitution

2

In a sense, soundness of the unification procedure is all that a correct deduction in
logic programming depends on, since that is what determines whether a rule has been
matched in plausible ways by a proper unifier. So whenever t .= s | θ, then θ is indeed
a unifier of t and s. However, if θ is a unifier but not a most-general unifier, then
proof search may be incomplete, because θ might then overcommit to an overly specific
substitution for which no proof exists, while a proof would have still existed for the
most-general unifier (recall Sect. 2).

Prolog, however, actually prescribes a fixed proof search strategy: first applicable
clause for the left-most subgoal is used with instantiation of their most-general unifier.
If the unifier θ from the judgment t .= s | θ is merely a unifier but not most general, then
we might not only have led to incomplete proof search, but might have also missed the
fact that the subgoals unifies with another clause at all. Thus, for Prolog, we also need
to make sure t .= s | θ gives the most-general unifier and that we find out when t and
s are not unifiable in the first place so that we can move on to consider the next clause
instead. These questions will be considered next.

8 Completeness

Completeness of the unification algorithm states that if s and t have a unifier, then there
exists a most general one according to the algorithm. We then also need to observe that
the unification judgment is deterministic to see that, if interpreted as an algorithm, it
will always find a most general unifier if one exists. That is, if t and s have a unifier σ,
then the judgment t .= s | θ will hold for a unifier θ that is more general, i.e., σ = θσ′ for
some σ′.

Theorem 7. If tσ = sσ then t .= s | θ and σ = θσ′ for some θ and σ′.

Proof: As in the soundness proof, we generalize the induction hypothesis to address
sequences of terms.

CONSTLOG LECTURE NOTES FRANK PFENNING , ANDRÉ PLATZER

Unification L19.9

(i) If tσ = sσ then t .= s | θ and σ = θσ′ for some θ and σ′.

(ii) If tσ = sσ then t
.
= s | θ and σ = θσ′ for some θ and σ′.

The proof proceeds by mutual induction on the structure of tσ and tσ. We proceed by
distinguishing cases for t and s, as well as t and s. This structure of argument is a bit
unusual: mostly, we distinguish cases of the subject of our induction, be it a deduction
or a syntactic object. In the situation here it is easy to make a mistake and incorrectly
attempt to apply the induction hypothesis, so you should carefully examine all appeals
to the induction hypothesis below to make sure you understand why they are correct.

Case: t = f(t). In this case we distinguish subcases for s.

Subcase: s = f(s).

f(t)σ = f(s)σ Assumption
tσ = sσ By defn. of substitution
t
.
= s | θ and σ = θσ′ for some θ and σ′ By IH(ii) on tσ

f(t)
.
= f(s) | θ and still σ = θσ′ By rule

Subcase: s = g(s) for f 6= g. This subcase is impossible:

f(t)σ = g(s)σ Assumption
Contradiction By defn. of substitution

Subcase: s = x.

f(t)σ = xσ Assumption
σ = (f(t)σ/x, σ′) for some σ′ By defn. of subst. and reordering
x /∈ FV(f(t)) Otherwise f(t)σ 6= xσ
f(t)

.
= x | (f(t)/x) so we let θ = (f(t)/x) By rule

σ = (f(t)σ/x, σ′) See above
= (f(t)σ′/x, σ′) Since x /∈ FV(f(t))
= (f(t)/x)σ′ By defn. of composition
= θσ′ Since θ = (f(t)/x)

Case: t = x. In this case we also distinguish subcases for s and proceed symmetrically
to the above.

Case: t = (·). In this case we distinguish cases for s.

Subcase: s = (·).
(·) .= (·) | (·) By rule
σ = (·)σ By defn. of composition

Subcase: s = (s1, s2). This case is impossible:

(·)σ = (s1, s2)σ Assumption
Contradiction By definition of substitution

Case: t = (t1, t2). Again, we distinguish two subcases.

CONSTLOG LECTURE NOTES FRANK PFENNING , ANDRÉ PLATZER

L19.10 Unification

Subcase: s = (·). This case is impossible, like the symmetric case above.

Subcase: s = (s1, s2).

(t1, t2)σ = (s1, s2)σ Assumption
t1σ = s1σ and
t2σ = s2σ By defn. of substitution
t1

.
= s1 | θ1 and

σ = θ1σ
′
1 for some θ1 and σ′1 By IH(i) on t1σ

t2(θ1σ
′
1) = s2(θ1σ

′
1) By equality reasoning

(t2θ1)σ
′
1 = (s2θ1)σ

′
1 By subst. composition (Theorem 2)

t2θ1
.
= s2θ1 | θ2 and

σ′1 = θ2σ
′
2 for some θ2 and σ′2 By IH(ii) on (t2θ1)σ

′
1 (= t2σ)

(t1, t2)
.
= (s1, s2) | θ1θ2 By rule

σ = θ1σ
′
1 = θ1(θ2σ

′
2) By equality reasoning

= (θ1θ2)σ
′
2 By associative composition (Theorem 2)

2

A proof by mutual induction on the structure of t and t would fail (see Exercise 1).
An alternative way we can restate the first induction hypothesis is:

For all r, s, t, and σ such that r = tσ = sσ, there exists a θ and a σ′ such that
t
.
= s | θ and σ = θσ′.

And accordingly for the second induction hypothesis. The proof then is by induction on
the structure of r, although the case we distinguish still concern the structure of s and
t. For the subcase s = (s1, s2), it is crucial to note that (t2θ1)σ′1 is a part of (t1, t2)(θ1σ′1),
which is tσ, to be able to appeal to the induction hypothesis for (t2θ1)σ′1 = (s2θ1)σ

′
1.

9 Termination

From the completeness proof in the previous section we can see that the deduction of
t
.
= s | θ is bounded by the structure of the common instance r = tθ = sθ. The induction

in the completeness proof was on the structure of that common instance, so no part of
the proof could have appealed to a larger instance. Since the rules furthermore have no
nondeterminism and the occurs-checks in the variable/term and term/variable cases
also just traverse subterms of r, it means a unifier (if it exists) can be found in time
proportional to the size of r.

Unfortunately, this means that this unification algorithm is exponential in the size of
t and s. For example, the only unifier for

g(x0, x1, x2, . . . , xn)
.
= g(f(x1, x1), f(x2, x2), f(x3, x3), . . . a)

has 2n occurrences of a.
Nevertheless, it is this exponential algorithm with a small, but significant modifica-

tion that is used in Prolog implementations. This modification (which makes Prolog

CONSTLOG LECTURE NOTES FRANK PFENNING , ANDRÉ PLATZER

Unification L19.11

unsound from the logical perspective!) is to omit the check x /∈ FV(t) in the vari-
able/term and term/variable cases and construct a circular term. This means that the
variable/term case in unification is constant time, because in an implementation we just
change a pointer associated with the variable to point to the term. This is of crucial im-
portance, since unification in Prolog models parameter-passing from other languages
(thinking of the predicate as a procedure), and it is not acceptable to take time propor-
tional to the size of the argument to invoke a procedure.

This observation notwithstanding, the worst-case complexity of the algorithm in Pro-
log is still exponential in the size of the input terms, but it is linear in the size of the re-
sult of unification. The latter fact appears to be what rescues this algorithm in practice,
together with its straightforward behavior which is important for Prolog programmers.

All of this does not tell us what happens if we pass terms to our unification algorithm
that do not have a unifier. It is not even obvious that the given rules terminate in that
case (see Exercise 2). Fortunately, in practice most non-unifiable terms result in a clash
between function symbols rather quickly.

10 Historical Notes

Unification was originally developed by Robinson [Rob65] together with resolution as
a proof search principle. Both of these critically influenced the early designs of Prolog,
the first logic programming language. Similar computations were described before, but
not studied in their own right (see [BS01] for more on the history of unification).

It is possible to improve the complexity of unification to linear in the size of the input
terms if a different representation for the terms and substitutions is chosen, such as a
set of multi-equations [MM76, MM82] or dag structures with parent pointers [PW78].
These and similar algorithms are important in some applications [Kni89], although in
logic programming and general theorem proving, minor variants of Robinson’s original
algorithm are prevalent.

Most modern versions of Prolog support sound unification, either as a separate pred-
icate unify with occurs check/2 or even as an optional part of the basic execution
mechanism2. Given advanced compilation technology, I have been quoted figures of
10% to 15% overhead for using sound unification, but I have not found a definitive
study confirming this.

Another way out is to declare that the bug is a feature, and Prolog is really a constraint
programming language over rational trees, which requires a small modification of the
unification algorithm to ensure termination in the presence of circular terms [Jaf84] but
still avoids the occurs-check. The price to be paid is that the connection to the predicate
calculus is lost, and that popular reasoning techniques such as induction are much more
difficult to apply in the presence of infinite terms.

2for example, in Amzi!Prolog

CONSTLOG LECTURE NOTES FRANK PFENNING , ANDRÉ PLATZER

L19.12 Unification

11 Exercises

Exercise 1. Show precisely where and why the attempt to prove completeness of the
rules for unification by mutual induction over the structure of t and t (instead of tσ and
tσ) would fail.

Exercise 2. Show that the rules for unification terminate no matter whether given unifi-
able or non-unifiable terms t and s. Together with soundness, completeness, and deter-
minacy of the rules this means that they constitute a decision procedure for finding a
most general unifier if it exists.

References

[BS01] Franz Baader and Wayne Snyder. Unification theory. In J.A. Robinson and
A. Voronkov, editors, Handbook of Automated Reasoning, volume 1, chapter 8,
pages 447–532. Elsevier and MIT Press, 2001.

[Jaf84] Joxan Jaffar. Efficient unification over infinite terms. New Generation Comput-
ing, 2(3):207–219, 1984.

[Kni89] Kevin Knight. Unification: A multi-disciplinary survey. ACM Computing Sur-
veys, 2(1):93–124, March 1989.

[MM76] Alberto Martelli and Ugo Montanari. Unification in linear time and space: A
structured presentation. Internal Report B76-16, Istituto di Elaborazione delle
Informazione, Consiglio Nazionale delle Ricerche, Pisa, Italy, July 1976.

[MM82] Alberto Martelli and Ugo Montanari. An efficient unification algorithm. ACM
Transactions on Programming Languages and Systems, 4(2):258–282, April 1982.

[Pfe06] Frank Pfenning. Logic programming: Lecture 6: Unification. Lecture Notes
15-819K, Carnegie Mellon University, 2006.

[PW78] M. S. Paterson and M. N. Wegman. Linear unification. Journal of Computer and
System Sciences, 16(2):158–167, April 1978.

[Rob65] J. A. Robinson. A machine-oriented logic based on the resolution principle.
Journal of the ACM, 12(1):23–41, January 1965.

[Sch12] Peter H. Schmitt. Formale Systeme. Vorlesungsskriptum Fakultät für Infor-
matik , Universität Karlsruhe, 2012.

CONSTLOG LECTURE NOTES FRANK PFENNING , ANDRÉ PLATZER

	Introduction
	Using Unification in Proof Search
	Substitution
	Composing Substitutions
	Unifiers
	Unification
	Soundness
	Completeness
	Termination
	Historical Notes
	Exercises

