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1 Introduction

The sequent calculus we have introduced so far maintains a direct correspondence to
natural deductions or, more specifically, to its verifications. One consequence is per-
sistence of antecedents: once an assumption has been introduced in the course of a de-
duction, it will remain available in any sequent above this point, because that is how
natural deduction works. While this is appropriate in a foundational calculus, it is not
at all ideal for proof search since rules can be applied over and over again without
necessarily making progress (which is a fate this sequent calculus shares with naı̈ve
tableau calculi). We therefore develop a second sequent calculus and then a third in
order to make the process of bottom-up search for a proof more efficient by reducing
unnecessary choices in proof search. By way of the link of the sequent calculus with
verification-style natural deductions from Lecture 10, this lecture will, thus, give rise to
a more efficient way of coming up with natural deduction proofs.

This lecture marks the beginning of a departure from the course of the lectures so far,
which, broadly construed, focused on understanding what a constructive proof is and
what can be read off or done once one has such a proof. Now we begin to move toward
the question of how to find such a proof in the first place.

More ambitiously, we are looking for a decision procedure for intuitionistic proposi-
tional logic. Specifically, we would like to prove that for every proposition A, either
=⇒ A or not =⇒ A. Based on experience, we might suspect this could be proved by
induction on A, but this will fail for various reasons. Since sequent proof rules popu-
late the antecedent, we need to prove that for every sequent, either Γ =⇒ A or not. That,
however, has its own problems because the premises of the rules are more complex
than the conclusion so it is not clear how one might apply an induction hypothesis.
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L11.2 Propositional Theorem Proving

First order of business, then, is to find a new, more restrictive system that eliminates
redundancy and makes the premises of the rules smaller than the conclusion. This
restricted sequent calculus will not quite satisfy our goal yet, but be a useful stepping
stone nonetheless.

The second step will be to refine our analysis of the rules to see if we can design a
calculus were all premises are smaller than the conclusion in some well-founded order-
ing. Dyckhoff [Dyc92] noticed that we can make progress by considering the possible
forms of the antecedent of the implication. In each case we can write a special-purpose
rule for which the premises are smaller than the conclusion. The result is a beautiful
calculus which Dyckhoff calls contraction-free because there is no rule of contraction,
and, furthermore, the principal formula of each left rule is consumed as part of the rule
application rather than copied to any premise, so we never duplicate reasoning (which
is exactly what we could if there were a contraction rule).

2 A More Restrictive Sequent Calculus1

Ideally, once we have applied an inference rule during proof search (that is, bottom-up),
we should not have to apply the same rule again to the same proposition. Since all rules
decompose formulas, if we had such a sequent calculus, we would have a simple and
clean decision procedure that always decomposes formulas to smaller subformulas. As
it turns out, there is a fly in the ointment, but let us try to derive such a system.

We write Γ −→ C for a lean sequent whose deductions try to eliminate principal
formulas as much as possible. We keep the names of the rules in this calculus (called
G4), since they are largely parallel to the rules of the original sequent calculus, Γ =⇒ C.

Conjunction. The right rule works as before; the left rule extracts both conjuncts at
once so that the conjunction itself is no longer needed.

Γ −→ A Γ −→ B

Γ −→ A ∧B
∧R

Γ, A,B −→ C

Γ, A ∧B −→ C
∧L

Observe that for both rules, all premises have smaller sequents than the conclusion if
one counts the number of connectives in a sequent. So applying either rule obviously
made progress toward simplifying the sequent.

It is easy to see that these rules are sound with respect to the ordinary sequent cal-
culus rules. Soundness here is the property that if Γ −→ C then Γ =⇒ C. This is
straightforward since ∧R is the same rule and ∧L is the same as ∧L1 followed by ∧L2

followed by weakening the original A ∧ B away. Thus, the restricted ∧L and ∧R rules
are derived rules in the original sequent calculus. Completeness is generally more dif-
ficult. What we want to show is that if Γ =⇒ C then also Γ −→ C, where the rules
for the latter sequents are more restrictive, by design. The proof of this will eventually

1This calculus was mentioned in square brackets in Lecture 9, without proof. We show it here as a starting
point for the contraction-free calculus, as we did in lecture.
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Propositional Theorem Proving L11.3

proceed by induction on the structure of the given deduction D and appeal to lemmas
on the restrictive sequent calculus. For example:

Case: (of completeness proof)

D =

D1

Γ, A ∧B,A =⇒ C

Γ, A ∧B =⇒ C
∧L1

Γ, A ∧B,A −→ C By i.h. on D1

Γ, A,B −→ A By identity for −→
Γ, A ∧B −→ A By ∧L on above
Γ, A ∧B −→ C By cut for −→

The induction hypothesis is applicable to D1 because, even if it is a longer sequent, D1

is a shorter proof thanD. We see that identity and cut for the restricted sequent calculus
are needed to show completeness in the sense described above. Fortunately, they hold
(see further notes at the end of this section). We will not formally justify many of the
rules, but give informal justifications or counterexamples.

Truth. There is a small surprise here, in that, unlike in natural deduction which had
no elimination rule for >, we can have a left rule for >, which eliminates it from the
antecedents to make progress (cleanup). It is analogous to the zero-ary case of conjunc-
tion.

Γ −→ >
>R

Γ −→ C

Γ,> −→ C
>L

Atomic propositions. They are straightforward, since the initial sequents do not
change and already make the best possible progress: close the proof.

Γ, P −→ P
id

Disjunction. The right rules to do not change; in the left rule we can eliminate the
principal formula.

Γ −→ A

Γ −→ A ∨B
∨R1

Γ −→ B

Γ −→ A ∨B
∨R2

Γ, A −→ C Γ, B −→ C

Γ, A ∨B −→ C
∨L

Intuitively, the assumption A ∨B can be eliminated from both premises of the ∨L rule,
because the new assumptions A and B are each stronger than the previous assumption
A ∨B. More formally:
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L11.4 Propositional Theorem Proving

Case: (of completeness proof)

D =

D1

Γ, A ∨B,A =⇒ C
D2

Γ, A ∨B,B =⇒ C

Γ, A ∨B =⇒ C
∨L

Γ, A ∨B,A −→ C By i.h. on D1

Γ, A −→ A By identity for −→
Γ, A −→ A ∨B By ∨R1

Γ, A −→ C By cut for −→

Γ, A ∨B,B −→ C By i.h. on D2

Γ, B −→ B By identity for −→
Γ, B −→ A ∨B By ∨R2

Γ, B −→ C By cut for −→

Γ, A ∨B −→ C By rule ∨L

Falsehood. Importantly, there is no right rule, and the left rule has no premise, which
means it transfers directly.

no ⊥R rule Γ,⊥ −→ C
⊥L

Implication. In all rules so far, all premises have fewer connectives than the conclu-
sion. For implication, we will not be able to maintain this desirable property in rule
⊃L.

Γ, A −→ B

Γ −→ A⊃B
⊃R

Γ, A⊃B −→ A Γ, B −→ C

Γ, A⊃B −→ C
⊃L

Here, the assumption A ⊃ B persists in the first premise of rule ⊃L but not in the
second. While the assumption B is more informative than A ⊃ B, so only B is kept in
the second premise, this is not the case in the first premise. Unfortunately, A⊃B may be
needed again in that branch of the proof to establish A. An example which requires the
implication more than once is −→ ¬¬(A ∨ ¬A), where ¬A = A ⊃ ⊥ as usual. Without
that additional assumption (marked in red below), the proof would not work (no LEM):

¬(A ∨ ¬A), A −→ A
id

¬(A ∨ ¬A), A −→ A ∨ ¬A
∨R1

A,⊥ −→ ⊥
⊥L

¬(A ∨ ¬A), A −→ ⊥
⊃L

¬(A ∨ ¬A) −→ ¬A
⊃R

¬(A ∨ ¬A) −→ A ∨ ¬A
∨R2

⊥ −→ ⊥
⊥L

¬(A ∨ ¬A) −→ ⊥
⊃L

−→ ¬¬(A ∨ ¬A)
⊃R

CONSTLOG LECTURE NOTES FRANK PFENNING , ANDRÉ PLATZER



Propositional Theorem Proving L11.5

Now all rules have smaller premises (if one counts the number of logical constants
and connectives in them) except for the ⊃L rule. We will address the ⊃L issue in Sec-
tion 4.

Nevertheless, we can interpret the rules as a decision procedure if we make the im-
portant observation that in bottom-up proof search we are licensed to fail a branch with a
repeating sequent along it. If there were a deduction, we would be able to find it apply-
ing a different choice at an earlier sequent, lower down in the incomplete deduction. If
there is a proof with repeating sequents, there also is a shorter proof without repeating
sequents, by applying the proof that was used for the later occurrence of the repeat-
ing sequent already to the first occurrence of said sequent. If we also apply contraction
(which is admissible in the restricted sequent calculus) to argue that we can remove du-
plicate formulas from the antecedent, then there are only finitely many sequents because
antecedents and succedents are composed only of (proper or improper) subformulas of
our original proof goal.

One can be much more efficient in loop checking than this [How98, Chapter 4], but
just to see that intuitionistic propositional calculus is decidable, this is sufficient. In
fact, we could have made this observation on the original sequent calculus, although it
would be even further from a realistic implementation.

3 Metatheory of the Restricted Sequent Calculus

We only enumerate the basic properties.

Theorem 1 (Weakening). If Γ −→ C then Γ, A −→ C with a structurally identical deduc-
tion.

Theorem 2 (Atomic contraction). If Γ, P, P −→ C then Γ, P −→ C with a structurally
identical deduction

Theorem 3 (Identity). A −→ A for any proposition A.

Proof: By induction on the structure of A. 2

Theorem 4 (Cut). If Γ −→ A and Γ, A −→ C then Γ −→ C

Proof: Analogous to the proof for the ordinary sequent calculus in Lecture 10. In the
case where the first deduction is initial, we use atomic contraction. 2

Theorem 5 (Contraction). If Γ, A,A −→ C then Γ, A −→ C.

Proof: Γ, A −→ A by identity and weakening. Therefore Γ, A −→ C by cut. 2

Theorem 6 (Soundness wrt. =⇒). If Γ −→ A then Γ =⇒ A.

Proof: By induction on the structure of the given deduction. 2

CONSTLOG LECTURE NOTES FRANK PFENNING , ANDRÉ PLATZER
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L11.6 Propositional Theorem Proving

Theorem 7 (Completeness wrt. =⇒). If Γ =⇒ A then Γ −→ A.

Proof: By induction on the structure of the given deduction, appealing to identity and
cut in many cases. See the cases for ∧L1 and ∨L in the previous section. 2

We repeat the rules of the restrictive sequent calculus here for reference.

Γ, P −→ P
id

Γ −→ A Γ −→ B

Γ −→ A ∧B
∧R

Γ, A,B −→ C

Γ, A ∧B −→ C
∧L

Γ −→ >
>R

Γ −→ C

Γ,> −→ C
>L

Γ −→ A

Γ −→ A ∨B
∨R1

Γ −→ B

Γ −→ A ∨B
∨R2

Γ, A −→ C Γ, B −→ C

Γ, A ∨B −→ C
∨L

no ⊥R rule Γ,⊥ −→ C
⊥L

Γ, A −→ B

Γ −→ A⊃B
⊃R

Γ, A⊃B −→ A Γ, B −→ C

Γ, A⊃B −→ C
⊃L

4 Refining the Left Rule for Implication

In order to find a more efficient form of the only problematic rule, rule⊃L, we consider
each possible shape for the implication in the antecedent in turn. We will start with
more obvious cases to find out the principles behind the design of the rules.

Truth. Consider a sequent
Γ,>⊃B −→ C

Can we find a simpler proposition expressing the same as > ⊃ B? Yes, namely just B,
since (>⊃B) ≡ B. So we can propose the following specialized rule:

Γ, B −→ C

Γ,>⊃B −→ C
>⊃L

This rule derives from ⊃L and >R, which are both sound, and has a simpler premise.
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Falsehood. Consider a sequent

Γ,⊥⊃B −→ C.

Can we find a simpler proposition expressing the same contents? Yes, namely >, since
(⊥⊃B) ≡ >. But> on the left-hand side can be eliminated by>L, so we can specialize
the general rule as follows:

Γ −→ C

Γ,⊥⊃B −→ C
⊥⊃L

Soundness of this rule also follows from weakening. Are we losing information com-
pared to applying ⊃L here? No because that would require a proof of Γ,⊥ ⊃ B −→ ⊥
which will succeed if ⊥ can be proved from Γ, but then there also is a direct proof
without using the elided antecedent ⊥⊃B.

Disjunction. Now we consider a sequent

Γ, (A1 ∨A2)⊃B −→ C

Again, we have to ask if there is a simpler equivalent formula we can use instead of
(A1 ∨ A2) ⊃ B. If we consider the ∨L rule, we might consider (A1 ⊃ B) ∧ (A2 ⊃ B). A
little side calculation confirms that, indeed,

((A1 ∨A2)⊃B) ≡ ((A1 ⊃B) ∧ (A2 ⊃B))

The computational intuition is that one way of getting a B out of having either an A1

or an A2 is equivalent to separate ways of getting a B out of an A1 as well as a way of
getting a B out of an A2. We can exploit this, playing through the rules as follows

Γ, A1 ⊃B,A2 ⊃B −→ C

Γ, (A1 ⊃B) ∧ (A2 ⊃B) −→ C
∧L

Γ, (A1 ∨A2)⊃B −→ C
equiv

This suggests the specialized rule

Γ, A1 ⊃B,A2 ⊃B −→ C

Γ, (A1 ∨A2)⊃B −→ C
∨⊃L

The question is whether the premise is really smaller than the conclusion in some well-
founded measure. We note that both of the new premises A1 ⊃B and A2 ⊃B are indi-
vidually smaller than the original formula (A1 ∨ A2) ⊃ B. Replacing one element in a
multiset by several, each of which is strictly smaller according to some well-founded or-
dering, induces another well-founded ordering on multisets [DM79]. So, the premises
are indeed smaller in the multiset ordering. Operationally, the effect of ∨⊃L is to sepa-
rately consider the smaller implications A1 ⊃B and A2 ⊃B.
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L11.8 Propositional Theorem Proving

Conjunction. Next we consider

Γ, (A1 ∧A2)⊃B −→ C

In this case we can create an equivalent formula by currying using that (A1∧A2)⊃B ≡
A1 ⊃ (A2 ⊃B).

Γ, A1 ⊃ (A2 ⊃B) −→ C

Γ, (A1 ∧A2)⊃B −→ C
∧⊃L

This formula is not strictly smaller, but we can make it so by giving conjunction a weight
of 2 while counting implications as 1. Fortunately and quite importantly, this weighting
does not conflict with any of the other rules we have. Operationally, the effect of ∧⊃L
is to first consider what to make of the first assumed conjunct A1 by the other rules and
then subsequently consider the second conjunct A2, which has the computational effect
of currying.

Atomic propositions. How do we use an assumption P ⊃ B? We can conclude B if
we also know P , so we restrict the rule to the case where the atomic proposition P is
already among the assumptions.

P ∈ Γ Γ, B −→ C

Γ, P ⊃B −→ C
P⊃L

Clearly, the premise is smaller than the conclusion. If we were to use⊃L instead, P ⊃B
would remain in the first premise. The intuitive reason why we do not have to keep it
is because the only way to make use of P ⊃ B is to produce a B from a P . But if we
already have such an atomic proposition P , the above rule already establishes B once
and for all. Note that, unlike a premise Γ −→ P , the premise P ∈ Γ will never search for
possible proof rule applications within Γ. Indeed, those would not be useful, because
we might as well apply them first before splitting into two premises doing them twice.

Implication. Last, but not least, we consider the case

Γ, (A1 ⊃A2)⊃B −→ C

We start by playing through the left rule⊃L for this particular case because, as we have
already seen, an implication on the left does not directly simplify when interacting with
another implication.

Γ, (A1 ⊃A2)⊃B,A1 −→ A2

Γ, (A1 ⊃A2)⊃B −→ A1 ⊃A2

⊃R
Γ, B −→ C

Γ, (A1 ⊃A2)⊃B −→ C
⊃L

The second premise is smaller and does not require further attention. For the first
premise, we need to find a smaller formula that is equivalent to ((A1 ⊃ A2)⊃ B) ∧ A1,
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which represents the two distinguished formulas in the antecedent context by a con-
junction. Fortunately, we find

((A1 ⊃A2)⊃B) ∧A1 ≡ (A2 ⊃B) ∧A1

which can be checked easily since A1 ⊃ A2 is equivalent to A2 if we already have A1.
This leads to the specialized rule

Γ, A2 ⊃B,A1 −→ A2 Γ, B −→ C

Γ, (A1 ⊃A2)⊃B −→ C
⊃⊃L

Indeed, all premises of⊃⊃L are simpler now, because A2⊃B has strictly less operators
than (A1 ⊃A2)⊃B and its operators are of the same weight.

There is a minor variation of this rule, which is also both sound and complete, and
the premises are all smaller (by the multiset ordering) than the conclusion:

Γ, A2 ⊃B −→ A1 ⊃A2 Γ, B −→ C

Γ, (A1 ⊃A2)⊃B −→ C
⊃⊃L

They are equivalent because, in general, Γ −→ A1 ⊃A2 iff Γ, A1 −→ A2.
This concludes the presentation of the specialized rules so that the only rule that kept

its principal formula around, ⊃L, is no longer needed since all forms of implications in
intuitionistic propositional logic are covered. The complete set of rule is summarized
in Figure 1.

Even though these rules can be interpreted as defining a decision procedure, such a
procedure would still not be practical except for small examples because there is too
much nondeterminism in choosing which rule to apply when. We will discuss such
nondeterminism in the next lecture.
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L11.10 Propositional Theorem Proving

P ∈ Γ

Γ −→ P
id

Γ −→ A Γ −→ B

Γ −→ A ∧B
∧R

Γ, A,B −→ C

Γ, A ∧B −→ C
∧L

Γ −→ >
>R

Γ −→ C

Γ,> −→ C
>L

Γ −→ A

Γ −→ A ∨B
∨R1

Γ −→ B

Γ −→ A ∨B
∨R2

Γ, A −→ C Γ, B −→ C

Γ, A ∨B −→ C
∨L

no ⊥R rule Γ,⊥ −→ C
⊥L

Γ, A −→ B

Γ −→ A⊃B
⊃R

P ∈ Γ Γ, B −→ C

Γ, P ⊃B −→ C
P⊃L

Γ, A1 ⊃ (A2 ⊃B) −→ C

Γ, (A1 ∧A2)⊃B −→ C
∧⊃L

Γ, B −→ C

Γ,>⊃B −→ C
>⊃L

Γ, A1 ⊃B,A2 ⊃B −→ C

Γ, (A1 ∨A2)⊃B −→ C
∨⊃L Γ −→ C

Γ,⊥⊃B −→ C
⊥⊃L

Γ, A2 ⊃B,A1 −→ A2 Γ, B −→ C

Γ, (A1 ⊃A2)⊃B −→ C
⊃⊃L

Figure 1: Contraction-free sequent calculus
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