
ConstLog: Constructive Logic

Lecture Notes on
Heyting Arithmetic and Recursion

Frank Pfenning André Platzer

Carnegie Mellon University ‖ Karlsruhe Institute of Technology
Lecture 7

1 Introduction

At this point in the course we have developed a good formal understanding how propo-
sitional intuitionistic logic is connected to computation: propositions are types, proofs are
programs, and proof reduction is computation. We have also introduced the universal
and existential quantifiers, but, of course, without some data types such as natural
numbers, integers, lists, trees, etc. we cannot reason about or compute with such data.
We reason about data using induction.

In this lecture we discuss the data type of natural numbers. They serve as a pro-
totype for a variety of inductively defined data types, such as lists or trees, because
they are the easiest case of a data type generated by a constructor taking the data type
itself as an argument (successor) from an atomic constructor (0). Together with quan-
tification from Lecture 6, this allow us to reason constructively about natural numbers
and extract corresponding functions from constructive proofs. The constructive sys-
tem for reasoning logically about natural numbers is called intuitionistic arithmetic or
Heyting arithmetic [Hey56]. The classical version of the same principles is called Peano
arithmetic [Pea89]. Both of these are usually introduced axiomatically rather than as an
extension of natural deduction as we do here.

The lecture notes also include several examples illustrating the correspondence of
inductive proofs and recursive functions.

2 Induction

As usual, we think of the type of natural numbers as defined by its introduction form.
Note, however, that nat is a type rather than a proposition. It is possible to completely
unify these concepts to arrive at type theory, something we might explore later in this

CONSTLOG LECTURE NOTES 12.6.2023 FRANK PFENNING , ANDRÉ PLATZER

http://lfcps.org/course/constlog.html
http://lfcps.org/course/constlog23/06-quant.pdf


L7.2 Heyting Arithmetic and Recursion

course. For now, we just specify cases for the typing judgment t : τ , read term t has type
τ , that was introduced in Lecture 6, but for which we have seen no specific instances
yet. We distinguish this fromM : Awhich has the same syntax, but relates a proof term
to a proposition instead of a term to a type. We now fill the typing judgment on terms
with life as t : nat compared to its abstract treatment in the quantification lecture.

There are two introduction rules, one for zero and one for successor.

0 : nat
natI0

n : nat

sn : nat
natIs

Intuitively, these rules express that 0 is a natural number (natI0) and that the successor
sn is a natural number if n itself is a natural number. This definition has a different
character from previous definitions. We defined the meaning of A ∧ B true from the
meaning of A true and of B true, all of which are propositions. It is even different from
the proof term assignment rules where, e.g., we defined 〈M,N〉 : A ∧ B in terms of
M : A and N : B. In each case, the proposition itself is decomposed into its parts.

The types in the conclusion and premise of the natIs rules stay the same, namely nat.
Fortunately, the term n in the premise is a part of the term sn in the conclusion, so the
definition is not circular, because the judgment in the premise is still smaller than the
judgment in the conclusion even if this is not because of the types. In (verificationist)
constructive logic, truth is defined by the introduction rules. The resulting implicit
principle, that nothing is true unless the introduction rules prove it to be true, is of
deep significance here. Nothing else is a natural number, except the objects constructed
via natIs from natI0. The rational number 7

4 cannot sneak in claiming to be a natural
number (which, by natIs would also make its successor 11

4 claim to be natural).
But what should the elimination rule be? We cannot decompose the proposition into

its parts, as it has no parts, so we decompose the term instead. Natural numbers have
two introduction rules just like disjunctions. Their elimination rule, thus, also proceeds
by cases, accounting for the possibility that a given n of type nat is either 0 or sx for
some x. A property C(n) is true if it holds no matter whether the natural number nwas
introduced by natI0 so is zero or was introduced by natIs so is a successor:

n : nat C(0) true

x : nat C(x) true
u

...
C(sx) true

C(n) true
natEx,u

In words: In order to prove property C of a natural number n we have to prove C(0)
and also C(sx) under the assumption that C(x) for a new parameter x. The scope of
x and u is just the rightmost premise of the rule natEx,u. This corresponds exactly to
proof by induction, where the proof of C(0) is the base case, and the proof of C(sx)
from the assumption C(x) is the induction step. That is why natEx,u is also called an
induction rule for nat.

CONSTLOG LECTURE NOTES FRANK PFENNING , ANDRÉ PLATZER

http://lfcps.org/course/constlog23/06-quant.pdf


Heyting Arithmetic and Recursion L7.3

We managed to state this rule without any explicit appeal to universal quantification,
using parametric judgments instead. We could, however, write the reasoning principle
down with explicit quantification as a proposition, in which case it becomes:

∀n:nat. C(0)⊃ (∀x:nat. C(x)⊃ C(sx))⊃ C(n)

for an arbitrary property C of natural numbers. It is an easy exercise to prove this with
the induction rule above, since the respective introduction rules lead to a proof that
exactly has the shape of natEx,u.

All natural numbers are zero or successors. To illustrate elimination rule natEx,u

in action, we start with a very simple property: every natural number is either 0 or has
a predecessor. First, a detailed induction proof in the usual mathematical style and then
a similar formal proof.

Theorem: ∀x:nat. x = 0 ∨ ∃y:nat. x = s y.
Proof: By induction on x.

Base: x = 0. Then the left disjunct is true.

Step: x = sx′. That is, x is the successor of some natural number (x′) for
which the theorem holds. Then the right disjunct is true: pick y = x′

and observe x = sx′ = s y.

Now we write this in the formal notation of inference rules. It is instructive to con-
struct this proof step-by-step; we show only the final deduction. We assume there is
either a primitive or derived rule of inference called refl expressing reflexivity of equal-
ity on natural numbers (n = n). We use the same names as in the mathematical proof.

x : nat

0 = 0 true
refl

0 = 0 ∨ ∃y:nat. 0 = s y true
∨I1

x′ : nat sx′ = sx′ true
refl

∃y:nat. sx′ = s y true
∃I

sx′ = 0 ∨ ∃y:nat. sx′ = s y true
∨I2

x = 0 ∨ ∃y:nat. x = s y true natEx′,u

∀x:nat. x = 0 ∨ ∃y:nat. x = s y true
∀Ix

This is a simple proof by cases and, in this particular proof, does not even use the
induction hypothesis x′ = 0 ∨ ∃y:nat. x′ = s y true, which would have been labeled u.
It is also possible to finish the proof by eliminating from that induction hypothesis, but
the proof then ends up being more complicated. At our present level of understanding,
the computational counterpart for the above proof might be a zero-check function for
natural numbers. It takes any natural number and provides the left disjunct if that
number was 0 while providing the right disjunct if it was a successor. Making use of
the witness, we will later discover more general computational content once we have a
proof term assignment.

CONSTLOG LECTURE NOTES FRANK PFENNING , ANDRÉ PLATZER



L7.4 Heyting Arithmetic and Recursion

In the application of the induction rule natE we used the property C(x), which is a
proposition with the free variable x of type nat, saying that x is either zero or a successor
of some natural number. More explicitly:

C(x) = (x = 0 ∨ ∃y:nat. x = s y)

While getting familiar with formal induction proofs it may be a good idea to write out
the induction formula explicitly.

3 Equality

We already used equality in the previous example, without justification, so we now
introduce it properly into our formal system. Equality is certainly a central part of
Heyting (and Peano) arithmetic.

There are many ways to define and reason with equality. The one we choose here is
the one embedded in arithmetic where we are only concerned with numbers. Thus we
are trying to define x = y only for natural numbers x and y. Of course, x = y must be
a proposition, not a term. As a proposition, we will use the techniques of the course and
define its truth by means of introduction and elimination rules!

The introduction rules for equality are straightforward based on the two introduction
rules for natural numbers.1

0 = 0 true
=I00

x = y true

sx = s y true
=Iss

If this is our definition of equality on natural numbers, how can we use the knowl-
edge that n = k? If n and k are both 0, we cannot learn anything, because no knowledge
was used for =I00. If both are successors, we know their argument must be equal. Fi-
nally, if one is a successor and the other zero, then this is contradictory and we can
derive anything (any proposition C).

no rule E00

0 = sx true
C true

=E0s
sx = 0 true
C true

=Es0

sx = s y true

x = y true
=Ess

Local soundness is very easy to check, but what about local completeness? It turns out
to be a complicated issue so we will not discuss it here.

4 Equality is Reflexive

As a simple inductive theorem we show the reflexivity of equality.

Theorem 1. ∀x:nat. x = x

1As a student observed in lecture, we could also just state x = x true as an inference rule with no
premise. However, it is difficult to justify the elimination rules we need for Heyting arithmetic from
this definition.

CONSTLOG LECTURE NOTES FRANK PFENNING , ANDRÉ PLATZER



Heyting Arithmetic and Recursion L7.5

Proof: By induction on x.

Base: x = 0. Then, indeed, 0 = 0 by rule =I00

Step: Assume the theorem x = x already holds for x and show sx = sx for the succes-
sor sx, which follows by =Iss.

2

This proof is small enough so we can present it in the form of a natural deduction.
For induction, we use C(n) = (n = n).

n : nat 0 = 0 true
=I00

x = x true
u

sx = sx true
=Iss

n = n true
natEx,u

∀x:nat. x = x true
∀In

The hypothesis x : nat introduced by natEx,u is implicitly used to establish that x = x
is a well-formed proposition, but is not explicit in the proof.

The above theorem justifies a derived rule of inference:

x : nat

x = x true
refl

by using ∀E with the theorem just proved. We usually suppress the premise x : nat
since we already must know x : nat for the proposition x = x to be well-formed at all.
This is the rule we used in Section 2.

5 Primitive Recursion

Reconsidering the elimination rule for natural numbers, we notice that we exploit the
knowledge that n : nat, but we only do so when we are trying to establish the truth of
a proposition, C(n). However, we are equally justified in using n : nat when we are
trying to establish not another proposition C(n) but another typing judgment of the
form t : τ . The rule, also called rule of primitive recursion for nat, then becomes

n : nat t0 : τ

x : nat r : τ
...

ts : τ

R(n, t0, x. r. ts) : τ
natEx,r

CONSTLOG LECTURE NOTES FRANK PFENNING , ANDRÉ PLATZER



L7.6 Heyting Arithmetic and Recursion

Here, R is a new term constructor,2 the term t0 is the term used for the zero case where
n = 0, and the term ts captures the successor case where n = sn′. In the latter case x is a
new parameter of type nat introduced in the rule that stands for the predecessor n′. And
r is a new parameter of type τ that stands for the result of the function R when applied
to that predecessor n′, which corresponds to an appeal to the induction hypothesis. The
term ts of type τ can use parameter x to refer to the predecessor and use parameter r
to refer to the result at x. Following a common notational convention of logic, the dots
in the notation x. r. ts of the third argument of R indicate that occurrences of x and r
in ts are bound with scope ts. The fact that both are bound corresponds to the newly
introduced assumptions x : nat and r : τ that are both introduced by natEx,r to prove
ts : τ in the rightmost premise.

The local reduction rules may help explain this concept. We first write them down
just on the terms, where they are computation rules.

R(0, t0, x. r. ts) =⇒R t0
R(sn′, t0, x. r. ts) =⇒R [R(n′, t0, x. r. ts)/r][n

′/x] ts

The first argument of R carries the recursion. The first reduction reduces recursors
at 0 to their designated result t0 coming from the second argument to R. The second
reduction reduces, at a successor sn′, to the term ts from the third argument to R with
parameter x instantiated to the concrete number n′ for the inductive hypothesis and
with parameter r instantiated to the particular value that the same recursor R had at
that predecessor n′. So the argument t0 of R indicates the output to use for n = 0 while
ts indicates the output to use for n = sx as a function of the predecessor x and of r for
the recursive outcome of R(n, t0, x. r. ts).

These proof terms are still somewhat unwieldy, so we consider a more readable
schematic form, called primitive recursion schema. If we define f by cases

f(0) = t0
f(s x) = ts(x, f(x))

where the only occurrence of f on the right-hand side is the one shown applied to x,
then we could have equivalently defined f explicitly with:

f = (fn n⇒ R(n, t0, x. r. ts(x, r)))

To verify this, apply f to 0 and apply the reduction rules and also apply f to sn for an
arbitrary n and once again apply the reduction rules.

f(0) =⇒R R(0, t0, x. r. ts(x, r))
=⇒R t0

noting that the x in x.r.ts(. . . ) is not a free occurrence (indicated by the presence of the
dot in x.) since it corresponds to the hypothesis x : nat in natEx,r. Finally

f(sn) =⇒R R(sn, t0, x. r. ts(x, r))
=⇒R ts(n,R(n, t0, x. r. ts(x, r)))
= ts(n, f(n))

2The name R starting the proof term for primitive recursion suggests recursion.

CONSTLOG LECTURE NOTES FRANK PFENNING , ANDRÉ PLATZER



Heyting Arithmetic and Recursion L7.7

The last equality is justified by a (meta-level) induction hypothesis, because we are try-
ing to show that f(n) = R(n, t0, x. r. ts(x, r)) and, when showing it for sn, can assume
to already have established it for the smaller n itself.

So far, our knowledge of typing judgments is limited to natural numbers. Before
we use primitive recursion for something exciting, we first need to understand how it
works on more general types τ .

6 Function Types

For moving beyond natural number types, we consider the type τ → σ that a term has
that is a function from input of type τ to output of type σ. We also reuse the notion of
functional abstraction (already used3 to describe proof terms ofA⊃B and ∀x:τ.A(x) to
describe functions at the level of data). We write τ→σ for functions from type τ to type
σ and present them here without further justification since they just mirror the kinds of
rules we have seen multiple times already.

x : τ...
s : σ

fnx:τ ⇒ s : τ → σ
→I s : τ → σ t : τ

s t : σ
→E

The local reduction is
(fnx:τ ⇒ s) t =⇒R [t/x]s

Now we can define function double via the schema of primitive recursion.

double(0) = 0
double(sx) = s (s (doublex))

We can read off the closed-form definition if we wish:

double = (fnn⇒ R(n, 0, x. r. s (s r)))

After having understood this, we will be content with using the schema of primitive
recursion. We define addition and multiplication as exercises.

plus(0) = fn y ⇒ y
plus(sx) = fn y ⇒ s ((plusx) y)

Notice that plus is a function of type nat → (nat → nat) that is primitive recursive in
its (first and only) argument.

times(0) = fn y ⇒ 0
times(sx) = fn y ⇒ (plus ((timesx) y)) y

Modulo currying/uncurrying to the appropriate function types, these are the ex-
pected definitions of addition/multiplication of natural numbers.

3The case for unifying all these notions in type theory looks pretty strong at this point.

CONSTLOG LECTURE NOTES FRANK PFENNING , ANDRÉ PLATZER



L7.8 Heyting Arithmetic and Recursion

7 Proof Terms

With proof terms for primitive recursion in place, we can now revisit and make a con-
sistent proof term assignment for the elimination form also with respect to the truth of
propositions. It stands to reason to use the same proof terms as for typing judgments.

n : nat M0 : C(0)

x : nat u : C(x)
u

...
Ms : C(sx)

R(n,M0, x. u.Ms) : C(n)
natEx,u

Except for the type of judgment (proof terms and propositions versus typing judg-
ments), this elimination rule natEx,u is the same as the (primitive) recursion rule natEx,r,
just on propositions instead of data.

The local reductions we discussed before for terms representing data, also work for
these proofs terms, because they are both derived from slightly different variants of the
elimination rules (one with proof terms, one with data terms).

R(0,M0, x. u.Ms) =⇒R M0

R(sn′,M0, x. u.Ms) =⇒R [R(n′,M0, x. u.Ms)/u][n
′/x]Ms

Computationally, we can conclude that proofs by induction correspond to functions defined
by primitive recursion, and that they compute in the same way!

Returning to the earlier example, we can write the proof terms.

Theorem: ∀x:nat. x = 0 ∨ ∃y:nat. x = s y.
Proof: By induction on x.

Base: x = 0. Then the left disjunct is true.

Step: x = sx′. Then the right disjunct is true: pick y = x′ and observe
x = sx′ = s y.

The extracted function we obtain by marking its natural deduction proof with proof
terms is the predecessor function (note how the use of inl versus inr correspond to the
zero check that predecessor functions need to perform on natural numbers as 0 has no
predecessor):

pred = fnx:nat⇒ R(x, inl , x. r. inr(x, ))

Here we have suppressed the evidence for equalities, since we have not yet introduced
proof terms for them. We just write for proofs of equality (whose computational con-
tent we do not care about).

CONSTLOG LECTURE NOTES FRANK PFENNING , ANDRÉ PLATZER



Heyting Arithmetic and Recursion L7.9

x : nat

: 0 = 0
refl

inl : 0 = 0 ∨ ∃y:nat. 0 = s y
∨I1

x′ : nat : sx′ = sx′
refl

(x′, ) : ∃y:nat. sx′ = s y
∃I

inr(x′, ) : sx′ = 0 ∨ ∃y:nat. sx′ = s y
∨I2

R(x, inl , x′.r′.inr(x′, )) : x = 0 ∨ ∃y:nat. x = s y
natEx′,r′

fnx⇒ R(x, inl , x′.r′.inr(x′, )) : ∀x:nat. x = 0 ∨ ∃y:nat. x = s y
∀Ix

8 Local Proof Reduction

For harmony, we would like to check that the rules for natural numbers are locally
sound and complete.

Local Soundness. For soundness, we verify that no matter how we introduce the
judgment n : nat, we can find a “more direct” proof of the conclusion. This is easy for
natI0, because the second premise already establishes our conclusion directly.

0 : nat
natI0

E
C(0) true

x : nat C(x) true
u

F
C(sx) true

C(0) true
natEx,u

=⇒R
E

C(0) true

The case where n = sn′ is more difficult and more subtle. Intuitively, we should be
using the deduction of the second premise for this case.

D
n′ : nat

sn′ : nat
natIs E

C(0) true

x : nat C(x) true
u

F
C(sx) true

C(sn′) true
natEx,u

=⇒R

D
n′ : nat

D
n′ : nat

E
C(0) true

x : nat C(x) true
u

F
C(s x) true

C(n′) true
natEx,u

[n′/x]F ′

C(s n′) true

CONSTLOG LECTURE NOTES FRANK PFENNING , ANDRÉ PLATZER



L7.10 Heyting Arithmetic and Recursion

It is difficult to see, however, in which way this is actually a reduction: D is duplicated,
E persists, and we still have an application of natE. The key to appreciating this as a
reduction, regardless, however, is that the term we are eliminating with the application
of natE becomes smaller: from sn′ to n′. In hindsight we should have expected this,
because the term is also the only component getting smaller in the second introduction
rule for natural numbers. Fortunately, the term that natE is applied to can only get
smaller finitely often, because it will ultimately just be 0, so will be back in the first
local reduction case.

The computational content of this local reduction directly explains in what way the
natural number gets smaller even if the form of the judgment stays the same, because
it corresponds directly to the reductions for primitive recursors R(n,M0, x. u.Ms).

The question of local expansion does not make sense solely in the truth setting with-
out the rule for typing judgments. The difficulty is that we need to show that we can
apply the elimination rules in such a way that we can reconstitute a proof of the original
judgment. However, the elimination rule for the truth judgment cannot really reintro-
duce n : nat, since the only two introduction rules natI0 and natIs do not apply.

9 Local Expansion

Using primitive recursion on typing judgments, we obtain a local expansion for n : nat.

D
n : nat =⇒E

D
n : nat 0 : nat

natI0
x : nat

sx : nat
natIs

R(n, 0, x. r. sx) : nat
natEx,r

A surprising observation about the local expansion is that it does not use the recur-
sive result, r, which corresponds to a use of the induction hypothesis. Consequently,
a simple proof-by-cases that uses natE0 when n is zero and uses natEs when n is a
successor would also have been locally sound and complete already.

This is a reflection of the fact that the local completeness property we have does not
carry over to a comparable global completeness. The difficulty is the well-known prop-
erty that in order to prove a propositionA by induction, we may have to first generalize
the induction hypothesis to some B, prove B by induction and also prove B ⊃A. Such
proofs do not have the subformula property that proofs only use subformulas of the
conclusion, which means that our strict verificationist program of explaining the mean-
ing of propositions from the meaning of their parts breaks down in arithmetic. In fact,
there is an entire hierarchy of arithmetic theories, depending on which propositions we
may use as induction formulas.

10 Example: Integer Square Root

Armed with the formal understanding of primitive recursion in Heyting arithmetic, we
now go through several examples informally, presenting proofs in the usual mathemat-

CONSTLOG LECTURE NOTES FRANK PFENNING , ANDRÉ PLATZER



Heyting Arithmetic and Recursion L7.11

ical style and their computational contents as recursive functions. The explicit discus-
sion of inductive arguments here is helpful when performing induction on structures
other than natural numbers.

At first, we might think of specifying the square root with the theorem

∀x:nat.∃y:nat. y2 = x

This is a great place to start: if we could prove that, the function extracted would take an
integer x as an argument and return a witness y =

√
x and a proof that indeed y2 = x.

Unfortunately, this is not a theorem because not every natural number is a square. So
we have to allow for rounding down or up. The following specification

∀x:nat.∃y:nat. y2 ≤ x ∧ x < (y + 1)2

does in fact round down. For example, for x = 10 the witness y = 3 will have the
property 32 = 9 ≤ 10 ∧ 10 < 16 = (3 + 1)2.

Now how do we prove this? The natural attempt is to prove it by mathematical in-
duction on x. This means to prove it for x = 0, then assume the theorem for x and
prove it for x+1. This form of induction is also called weak induction because the induc-
tion hypothesis only assumes the statement for x. We will encounter complete induction,
alias strong induction later in this lecture, where the induction hypothesis assumes it for
0, 1, 2, . . . , x.

Theorem 2 (Integer Square Root). ∀x:nat. ∃y:nat. y2 ≤ x ∧ x < (y + 1)2

Proof: By mathematical induction on x.

Base: x = 0. Then we pick the witness y = 0 because 02 = 0 ≤ 0 ∧ 0 < 1 = (0 + 1)2.

IH: Assume ∃y:nat. y2 ≤ x ∧ x < (y + 1)2.

Step: We have to prove ∃y:nat. y2 ≤ x+ 1 ∧ x+ 1 < (y + 1)2.

∃y:nat. y2 ≤ x ∧ x < (y + 1)2 by IH
a2 ≤ x ∧ x < (a+ 1)2 for some a, by ∃E

Now we distinguish two cases: x+ 1 is still less than (a+ 1)2 or it is greater than
or equal to (a+1)2. When given x and a, we can decide this inequality so the case
distinction is constructively permissible.

Case: x+ 1 < (a+ 1)2. Then we pick the witness y = a because

a2 ≤ x+ 1 since a2 ≤ x
x+ 1 < (a+ 1)2 this case

Case: x+ 1 ≥ (a+ 1)2. Then we pick the witness y = a+ 1 because

x+ 1 = (a+ 1)2 by case since x < (a+ 1)2

(a+ 1)2 ≤ x+ 1 from previous line
x+ 1 < (a+ 2)2 since x+ 1 = (a+ 1)2 < (a+ 2)2

CONSTLOG LECTURE NOTES FRANK PFENNING , ANDRÉ PLATZER



L7.12 Heyting Arithmetic and Recursion

2

For clarity, we call out the induction hypothesis (IH) explicitly in the above proof, even
if this is not necessary in such simple cases.

What is the computational content of this proof? It is a recursive function, where
an appeal to the induction hypothesis corresponds to a recursive call. When a witness
for an existential is exhibited in the proof, we return this witness. We ignore here the
attendant proof that the returned witness is in fact correct, so the function below will
have only a portion of all of the information of the proof.

fun isqrt 0 = 0

| isqrt (x+1) =

let val a = isqrt x

in if x+1 < (a+1)*(a+1)

then a

else a+1

end

This does not literally work in Standard ML because it cannot pattern-match against
x+ 1, so we have to rewrite this slightly. We also use built-in type int instead of nat.

fun isqrt 0 = 0

| isqrt x = (* x > 0 *)

let val a = isqrt (x-1)

in if x < (a+1)*(a+1)

then a

else a+1

end

This algorithm is not what one would think of as an implementation of a square root.
To compute the integer square root of x it runs through all the numbers up to x, es-
sentially adding 1 every time we hit the next square (the else case of the conditional).
Computationally this is expensive in time. It is also expensive in space because the
function is not tail recursive.

A different proof of the same theorem corresponds to a more efficient function (see
Section 13). This illustrates, yet again, that since constructive proofs and functions are in
Curry-Howard correspondence, different proofs of the same theorem can have different
efficiency in terms of their computational content.

11 Example: Exponentiation

We define the mathematical function of exponentiation on natural numbers by b0 = 1
and bn+1 = b × bn for n > 0. We can prove a theorem that natural numbers are closed
under exponentiation, so there is an implementation.

Theorem 3 (Exponential closure). ∀b:nat.∀n:nat.∃y:nat. y = bn

CONSTLOG LECTURE NOTES FRANK PFENNING , ANDRÉ PLATZER



Heyting Arithmetic and Recursion L7.13

Proof: By mathematical induction on n.

Base: n = 0. Then pick y = 1 because 1 = b0.

IH: Assume ∃y:nat. y = bn.

Step: We have to show that ∃y:nat. y = bn+1.

∃y:nat. y = bn by IH
a = bn for some a, by ∃E
Pick y = b× a = b× bn = bn+1 by def
∃y:nat. y = bn+1 by ∃I

2

The extracted function corresponding to this proof is entirely straightforward. We write
it directly in Standard ML form.

fun exp b 0 = 1

| exp b n = (* n > 0 *)

let val a = exp b (n-1)

in b * a end

Again, this function is not tail-recursive since we take the result a returned by the re-
cursive call and still multiply it by b instead of returning directly.

To obtain a tail-recursive version, we need to find a different proof of the same spec-
ification! From our experience in functional programming we know that we need to
carry along an accumulator for the result in an auxiliary function. Such an auxiliary
function corresponds to a lemma on the mathematical side. The accumulator c is an
additional argument, so the lemma has one additional quantifier.

∀b:nat.∀n:nat.∀c:nat. ∃y:nat. ???

The tricky question is what does the lemma express? Because we multiply the accumula-
tor by the base b at every recursive call, the generalization is also stated multiplicatively.
In general, though, coming up with an appropriate generalization of the theorem is a
creative and difficult task.

Lemma 4. ∀b:nat. ∀n:nat.∀c:nat. ∃y:nat. y = c× bn

Proof: By mathematical induction on n.

Base: n = 0. Then pick y = c because y = c = c× b0.

IH: Assume ∀c:nat. ∃y:nat. y = c× bn.

Step: We have to show ∀c:nat.∃y:nat. y = c× bn+1, that is for the sake of using ∀I , for
an arbitrary c1 we have to show ∃y:nat. y = c1 × bn+1.

CONSTLOG LECTURE NOTES FRANK PFENNING , ANDRÉ PLATZER



L7.14 Heyting Arithmetic and Recursion

∀c:nat. ∃y:nat. y = c× bn by IH
∃y:nat. y = (c1 × b)× bn using c = c1 × b, by ∀E
a = (c1 × b)× bn = c1 × bn+1 for some a, by ∃E
∃y:nat. y = c1 × bn+1 picking y = a and ∃I
∀c:nat. ∃y:nat. y = c× bn+1 by ∀I

2

Now a second proof for Theorem 3 no longer requires a proof by induction, directly
calling on the above lemma instead.

Theorem 5 (Exponential closure). ∀b:nat. ∀n:nat.∃y:nat. y = bn

Proof: From the preceding lemma by using c = 1 since 1× bn = bn 2

The computational content is now two functions, exp2_aux corresponding to the lemma,
and exp2 for the theorem.

fun exp2_aux b 0 c = c

| exp2_aux b n c = (* n > 0 *)

let val a = exp2_aux b (n-1) (c*b)

in a end

fun exp2 b n = exp2_aux b n 1

The auxiliary function is now tail recursive because the witness a for y in the proof
is just the witness from the appeal to the induction hypothesis. We can shorten the
program slightly to make this more immediate:

fun exp2_aux b 0 c = c

| exp2_aux b n c = (* n > 0 *)

exp2_aux b (n-1) (c*b)

fun exp2 b n = exp2_aux b n 1

There is still a disadvantage to this implementation in that it carries out n multipli-
cations. There is a yet more efficient implementation which carries out only O(log(n))
multiplications by taking advantage of the observation that b2n = (b2)n. That is, we can
calculate b2n by instead calculating bn2 for a different base b2. The corresponding induc-
tive proof has a somewhat different structure from the proofs so far, because the step
foreshadowed above reduces computing b2n to computing (b2)n, which means given an
(even) n > 0, we have to apply the induction hypothesis to n/2. A similar reasoning
will apply for odd numbers. Fortunately, n/2 < n for n > 0, so the principle of complete
induction allows this pattern of reasoning.

The statement of the lemma itself remains unchanged, only its proof.

Lemma 6. ∀b:nat. ∀n:nat.∀c:nat. ∃y:nat. y = c× bn

CONSTLOG LECTURE NOTES FRANK PFENNING , ANDRÉ PLATZER



Heyting Arithmetic and Recursion L7.15

Proof: By complete induction on n.

Base: n = 0. Then, as before, pick y = c.

IH: ∀b:nat.∀k:nat. (k < n⊃ ∀c:nat. ∃y:nat. y = c× bk)

Step: n > 0. Then we distinguish two cases: n is even or n is odd. Presumably this can
be decided in our theory of natural numbers.

Subcase: n = 2k for some k < n. We have to prove ∃y:nat. y = c1 × bn1 for some
arbitrary c1 and b1 (by ∀I).

∃y:nat. y = c1 × (b1 × b1)k
by IH for b = b1 × b1, k < n, and c = c1

a = c1 × (b1 × b1)k for some a, by ∃E
Pick y = a = c1 × (b21)

k = c1 × b2k1 = c1 × bn1
∃y:nat. y = c1 × bn1 by ∃I

Subcase: n = 2k + 1 for some k < n. We have to prove ∃y:nat. y = c1 × bn1 for
some arbitrary c1 and b1 (by ∀I).

∃y:nat. y = (c1 × b1)× (b1 × b1)k
by IH for b = b1 × b1, k < n, and c = c1 × b

a = (c1 × b1)× (b1 × b1)k for some a, by ∃E
Pick y = a = (c1 × b1)× (b21)

k = c1 × b2k+1
1 = c1 × bn1

∃y:nat. y = c1 × bn1 by ∃I

2

This proof uses complete induction, since while proving the case n > 0 its induction
hypothesis assumes the theorem already for all k < 0. Note how useful it is to explicitly
clarify IH (although a different quantifier ordering ∀k(k < n ⊃ ∀b∀c∃y . . . ) would also
have worked). During the induction step to prove it for n > 0, it is crucial that IH
is only used for k that are indeed strictly smaller than n, as explicitly indicated in the
above proof.

The proof of the theorem does not change, but the extracted function now calls upon
a different version of the auxiliary function because we have given a different proof.
Note that it is still tail recursive, and we were able to put the accumulator to good use
in the case of an odd number.

fun exp3_aux b 0 c = c

| exp3_aux b n c = (* n > 0 *)

if n mod 2 = 0

then exp3_aux (b*b) (n div 2) c

else exp3_aux (b*b) ((n-1) div 2) (c*b)

fun exp3 b n = exp3_aux b n 1

CONSTLOG LECTURE NOTES FRANK PFENNING , ANDRÉ PLATZER



L7.16 Heyting Arithmetic and Recursion

12 Example: Warshall’s Algorithm for Graph Reachability

This example is even less formal and sketchier than the previous section. It concerns
induction about structures other than natural numbers, particularly lists.

To start with, how do we even specify graph reachability? We assume we are given
a graph G via a type of nodes N and a collection of edges E connecting nodes. We
consider the graph G fixed, so we won’t repeatedly mention it in every proposition in
the rest of this section.

We also have a notion of a path through a graph, following the set of edges. We write
path(x, y) when there is a path p in the graph G connecting x and y.4 We can then
specify graph reachability as

∀x:N. ∀y:N. path(x, y) ∨ ¬path(x, y)

Classically, this is a triviality, because it has the form ∀x. ∀y.A∨¬A which is classically
obviously true by the law of excluded middle. Constructively, a proof will have to show
whether, given an x and y, there is a path connecting them or not. In addition, the proof
of path(x, y) should exhibit such a path, while a proof of ¬path(x, y) should derive a
contradiction from the assumption that there is one. As in the previous examples, we
will ignore some of the computational content of the proof, focusing on returning the
boolean true if there is a path and false if there is none. In a later lecture we may see how
we can systematically and formally hide some of the computational contents of proofs
while keeping other information.

Now the statement above could be proved in a number of ways. For example, we
might proceed by induction over the length of the potential path, or by induction over
the number of unvisited nodes in the graph, each giving rise to different implementa-
tions. Here, will use a different idea: consider a fixed enumeration of the vertices in the
graph (a list of vertices) and proceed by induction over the structure of this list. Given
some list V of vertices, we write pathV (x, y) if there is a path p connecting x and y using
only vertices from V as interior nodes. That is, the path p must start with x, finish with
y, and all other vertices on p must be in V . Here, pathV (x, y) is considered as a formula
in three arguments, x, y and list V .

Now we mildly generalize our statement so we can prove it inductively:

∀V :N list. ∀x:N. ∀y:N. pathV (x, y) ∨ ¬pathV (x, y)

Our original theorem follows easily by picking V = N , because then the path is allowed
to contain all vertices.

Theorem 7. ∀V :N list.∀x:N. ∀y:N. pathV (x, y) ∨ ¬pathV (x, y)

Proof: By induction on the structure of V .

4Other representations are possible that make the path explicit, but that is not necessary to understand
the basic idea.

CONSTLOG LECTURE NOTES FRANK PFENNING , ANDRÉ PLATZER



Heyting Arithmetic and Recursion L7.17

Base: V = nil, the empty list. Then pathnil(x, y) exactly if there is a direct edge from x
to y because no interior nodes are allowed.

IH: Assume ∀x:N. ∀y:N. pathW (x, y) ∨ ¬pathW (x, y).

Step: Consider V = z ::W for some vertex z with remaining listW . To show pathV (x, y)∨
¬pathV (x, y) we use IH and distinguish two cases:

Case: pathW (x, y). Then also pathz::W (x, y) since we do not even need to use the
additional vertex z to find a path from x to y in V .

Case: ¬pathW (x, y). Now we use IH again on W , but this time on x and z, so
pathW (x, z) ∨ ¬pathW (x, z). We once again distinguish two cases:

Subcase: pathW (x, z). Now we use IH a third time to see if there is a path
from z to y using only W : pathW (z, y) ∨ ¬pathW (z, y). Again, we distin-
guish these cases:

Subsubcase: pathW (z, y). Since also pathW (x, z) we can concatenate
these two paths to obtain pathz::W (x, y). Now z has to be added,
because it is on the interior of the path that goes from x to y, but
that’s fine since V = z ::W .

Subsubcase: ¬pathW (z, y). Then ¬pathz::W (x, y): if there is no path
from x to y entirely over W , allowing z does not help when there is
no path from z to y over W .

Subcase: ¬pathW (x, z). Then also ¬pathz::W (x, y) because, similar to the
previous subsubcase, adding z does not help when it has no path from
x.

2

In writing out the computational content we replace the if-then-else constructs with
corresponding uses of the short-circuit evaluation orelse and andalso, for the sake of
brevity and readability.

b orelse c == if b then true else c

b andalso c == if b then c else false

The code then turns out to be exceedingly compact.

fun warshall edge (nil) x y = edge x y

| warshall edge (z::W) x y =

warshall edge W x y orelse

(warshall edge W x z andalso warshall edge W z y)

The compiler tells us

val warshall = fn : (’a -> ’a -> bool) -> ’a list -> ’a -> ’a -> bool

CONSTLOG LECTURE NOTES FRANK PFENNING , ANDRÉ PLATZER



L7.18 Heyting Arithmetic and Recursion

which means that this works for any type of vertices ’a as long as we have a function
representing the edge relation.

This does not quite capture Warshall’s algorithm yet: to get the right complexity
we need to represent the function warshall edge V as a two-dimensional boolean array
indexed by x and y, and for each z run through all pairs x and y to fill it with booleans.5

This transformation can be carried out informally, or rigorously as shown in [Pfe90].
Of course, for small graphs the SML source code including a small example works just
fine.

If now look back at the proof we can see that it actually contains enough information
to also extract the path when there is one. If a path is represented by a list of vertices,
the result of of an extracted function which return the path if there is one will have type

val warshall2 : (’a -> ’a -> bool) -> ’a list

-> ’a -> ’a -> ’a list option

which is implemented by the following function

fun warshall2 edge (nil) x y =

if edge x y then SOME [x,y] else NONE

| warshall2 edge (z::W) x y =

case warshall2 edge W x y

of SOME p => SOME p

| NONE => (case warshall2 edge W x z

of SOME q => (case warshall2 edge W z y

of SOME r => SOME (q @ tl r)

| NONE => NONE)

| NONE => NONE)

13 Bonus Example: Tail-Recursive Integer Square Root

We did not have time to discuss this in lecture, but we may consider how we can make
the integer square root example more efficient. In particular, we should see if we can
make it tail recursive. The key idea is the same that might occur to anyone when ask
the implement integer square root: we add a counter c which we increment until c2

exceeds x. The problem now becomes how to state the theorem and how to find a
corresponding proof.

The counter needs to become a new argument of an auxiliary function, so in the
lemma there will be additional quantifier. All the quantifiers range over natural num-
bers, so we omit the type. We try

∀x.∀c. c2 ≤ x⊃ ∃y. y2 ≤ x ∧ x < (y + 1)2

At first sight this might look wrong since c does not occur in the scope of the quantifier
on y, but the information about c may help us to construct such a y anyway.

5See, for example, the Wikipedia page on then Floyd-Warshall algorithm

CONSTLOG LECTURE NOTES FRANK PFENNING , ANDRÉ PLATZER

https://en.wikipedia.org/wiki/Floyd-Warshall_algorithm


Heyting Arithmetic and Recursion L7.19

In the proof, what becomes smaller as we count c upward? Clearly, it is the distance
between c and x or, more precisely, the distance between c2 and x. When this distance
becomes 0, we terminate the recursion. This leads to the following lemma, proof, and
theorem:

Lemma 8. ∀x.∀c. c2 ≤ x⊃ ∃y. y2 ≤ x ∧ x ≤ (y + 1)2

Proof: By complete induction on x− c2.
We have to prove, for an arbitrary x and c with c2 ≤ x that ∃y. y2 ≤ x ∧ x < (y + 1)2.

We distinguish two cases:

Case: x < (c + 1)2. Then we can pick y = c since c2 ≤ x (by assumption) and x <
(c+ 1)2 (this case).

Case: (c + 1)2 ≤ x. Then we can apply the induction hypothesis, precisely because
(c+ 1)2 ≤ x and x− (c+ 1)2 = x− c2 − 2c− 1 < x− c2.

∃y. y2 ≤ x ∧ x < (y + 1)2 by ind. hyp.

But this is exactly what we needed to prove.

2

Theorem 9. ∀x. ∃y. y2 ≤ x ∧ x ≤ (y + 1)2

Proof: Use the lemma for c = 0, which satisfies the requirement because c2 = 0 ≤ x
for any x. 2

The extracted function then looks as follows:

fun isqrt2_aux x c = (* c*c <= x *)

if x < (c+1)*(c+1)

then c

else (* (c+1)*(c+1) <= x *)

isqrt2_aux x (c+1)

fun isqrt2 x = isqrt2_aux x 0

We can take the analysis a bit further and try to ask: what does an induction over
x − c2 actually mean? One possible interpretation is to add another variable d and
constrain it to be equal to x− c2 so we apply complete induction on this variable.

Lemma 10. ∀x.∀d.∀c. c2 ≤ x ∧ d = x− c2 ⊃ ∃y. y2 ≤ x ∧ x ≤ (y + 1)2

Proof: Proof is by complete induction on d. Assume we have an x, d, and c such that
c2 ≤ x and d = x− c2.

Previously, we distinguished cases based on whether x < (c+ 1)2 or not. But we can
rephrase test in terms of d: x < c2 + 2c+ 1 iff x− c2 < 2c+ 1 iff d < 2c+ 1.

CONSTLOG LECTURE NOTES FRANK PFENNING , ANDRÉ PLATZER



L7.20 Heyting Arithmetic and Recursion

Case: d < 2c+ 1. Then y = c satisfies the theorem because also c2 ≤ x by assumption
and x < (c+ 1)2 in this case.

Case: d ≥ 2c+1. Then (c+1)2 ≤ x and 0 ≤ x−(c+1)2 = x−c2−2c−1 = d−2c−1 < d
so we can apply the induction hypothesis on d− 2c− 1 and c+ 1 to obtain some
y such that y2 ≤ x ∧ x ≤ (y + 1)2.

2

Theorem 11. ∀x.∃y. y2 ≤ x ∧ x ≤ (y + 1)2

Proof: Use the lemma for d = x and c = 0, which satisfy the requirements because
c2 = 0 ≤ x for any x and x− c2 = x 2

The code, leaving out any extraneous proof information:

fun isqrt3_aux x d c =

if d < 2*c+1

then c

else isqrt3_aux x (d-2*c-1) (c+1)

fun isqrt3 x = isqrt3_aux x x 0

Note that this remaind tail recursive and avoids the potentially “costly” multiplication
(c+ 1)× (c+ 1) on every recursive call from the previous version.

References

[Hey56] Arend Heyting. Intuitionism: An Introduction. North-Holland Publishing, Am-
sterdam, 1956. 3rd edition, 1971.

[Pea89] Giuseppe Peano. Arithmetices Principia, Nova Methodo Exposita. Fratres Bocca,
1889.

[Pfe90] Frank Pfenning. Program development through proof transformation. Con-
temporary Mathematics, 106:251–262, 1990.

CONSTLOG LECTURE NOTES FRANK PFENNING , ANDRÉ PLATZER


	Introduction
	Induction
	Equality
	Equality is Reflexive
	Primitive Recursion
	Function Types
	Proof Terms
	Local Proof Reduction
	Local Expansion
	Example: Integer Square Root
	Example: Exponentiation
	Example: Warshall's Algorithm for Graph Reachability
	Bonus Example: Tail-Recursive Integer Square Root

