Constructive Logic (15-317), Spring 2021 Recitation 7: Sequent Calculus and Cut Elimination (2021-03-17)

André Platzer et al

1 The Rules

Recall that left rules correspond to "upside down elimination rules" and that right rules correspond to introduction rules.

$$\frac{\Gamma, A \land B, A \Longrightarrow C}{\Gamma, A \land B \Longrightarrow C} \land L_1 \qquad \frac{\Gamma, A \land B, B \Longrightarrow C}{\Gamma, A \land B \Longrightarrow C} \land L_2 \qquad \frac{\Gamma \Longrightarrow A \quad \Gamma \Longrightarrow B}{\Gamma \Longrightarrow A \land B} \land R$$

$$\frac{\Gamma, A \lor B, A \Longrightarrow C \quad \Gamma, A \lor B, B \Longrightarrow C}{\Gamma, A \lor B \Rightarrow C} \lor L \qquad \frac{\Gamma \Longrightarrow A}{\Gamma \Longrightarrow A \lor B} \lor R_1 \qquad \frac{\Gamma \Longrightarrow B}{\Gamma \Longrightarrow A \lor B} \lor R_2$$

$$No \ TL. \qquad \overline{\Gamma \Longrightarrow T} \ TR \qquad \overline{\Gamma, \bot \Longrightarrow C} \ ^{\bot L} \qquad No \ \bot R.$$

$$\frac{\Gamma, A \supset B \Longrightarrow A \quad \Gamma, A \supset B, B \Longrightarrow C}{\Gamma, A \supset B \Rightarrow C} \supset L \qquad \frac{\Gamma, A \Longrightarrow B}{\Gamma \Longrightarrow A \supset B} \supset R$$

$$\overline{\Gamma, A \supset B} \Longrightarrow C \qquad \Box \qquad \overline{\Gamma, A \supset B} \Rightarrow C$$

2 Some Example Proofs

Task 1. $\cdot \Longrightarrow A \supset A$

Solution 1:

$$\frac{\overline{A \Longrightarrow A}}{\cdot \Longrightarrow A \supset A} \stackrel{\text{id}}{\supset} R$$

Task 2. $\cdot \Longrightarrow A \land B \supset B \land A$

Solution 2:

$$\frac{\overline{A \land B, B \Longrightarrow B}}{\underline{A \land B \Longrightarrow B}} \stackrel{\text{id}}{\land L_2} \quad \frac{\overline{A \land B, A \Longrightarrow A}}{\underline{A \land B \Longrightarrow A}} \stackrel{\text{id}}{\land L_1} \\ \frac{\overline{A \land B \Longrightarrow B \land A}}{\underline{A \land B \Longrightarrow B \land A}} \stackrel{\land R}{\land R}$$

Task 3. $\cdot \Longrightarrow (A \supset (B \land C)) \supset (A \supset B)$

Solution 3:

$$\frac{\overline{(A \supset (B \land C)), A \Longrightarrow A} \text{ id } \frac{\overline{(A \supset (B \land C)), A, B \land C, B \Longrightarrow B}}{(A \supset (B \land C)), A, B \land C \Longrightarrow B} \stackrel{\text{id}}{\land L_1} \\ \frac{\overline{(A \supset (B \land C)), A \Longrightarrow B}}{(A \supset (B \land C)) \Longrightarrow (A \supset B)} \supset R \\ \frac{\overline{(A \supset (B \land C)) \Longrightarrow (A \supset B)}}{(A \supset (B \land C)) \supset (A \supset B)} \supset R$$

Task 4. $\cdot \Longrightarrow (A \supset B \supset C) \supset B \supset A \supset C$

$$\frac{\overline{A \supset B \supset C, B, A \Longrightarrow A} \text{ id } \frac{\overline{A \supset B \supset C, B, A, B \supset C \Longrightarrow B} \text{ id } \overline{A \supset B \supset C, B, A, B \supset C, C \Longrightarrow C}}{A \supset B \supset C, B, A, B \supset C \Longrightarrow C} \xrightarrow{A \supset B \supset C, B, A \Longrightarrow C} \supset L$$

$$\frac{A \supset B \supset C, B, A \Longrightarrow C}{A \supset B \supset C, B \Longrightarrow A \supset C} \supset R$$

$$\frac{A \supset B \supset C \Longrightarrow B \supset A \supset C}{A \supset B \supset C \supset B \supset A \supset C} \supset R$$

Task 5. $\cdot \Longrightarrow (A \supset B) \supset ((A \land C) \supset (B \land C))$

Solution 5:

$$\frac{\overrightarrow{(A \supset B), (A \land C), A \Longrightarrow A}}{(A \supset B), (A \land C) \Longrightarrow A} \stackrel{\text{id}}{\wedge L_1} \overline{(A \supset B), (A \land C), B \Longrightarrow B} \stackrel{\text{id}}{\supset L} \frac{\overrightarrow{(A \supset B), (A \land C), C \Longrightarrow C}}{(A \supset B), (A \land C) \Longrightarrow C} \stackrel{\text{id}}{\wedge L_2} \frac{A \supset B, (A \land C) \Longrightarrow B}{(A \supset B), (A \land C) \Longrightarrow C} \stackrel{\text{id}}{\wedge R} \frac{A \supset B}{(A \supset B), (A \land C) \longrightarrow C} \stackrel{\text{id}}{\wedge R} \frac{A \supset B}{(A \supset B), (A \land C) \supset B \land C} \stackrel{\text{id}}{\wedge R} \frac{A \supset B}{(A \supset B) \implies ((A \land C) \supset (B \land C))} \stackrel{\text{id}}{\rightarrow R} \stackrel{\text{id}}{\rightarrow R} \frac{A \supset B}{(A \supset B) \implies ((A \land C) \supset (B \land C))} \stackrel{\text{id}}{\rightarrow R} \stackrel{\text{id}}{\rightarrow R} \frac{A \supset B}{(A \supset B) \implies ((A \land C) \supset (B \land C))} \stackrel{\text{id}}{\rightarrow R} \stackrel{\text{id}}{\rightarrow R}$$

3 Cuts

As a reminder, the cut theorem is as follows: If $\Gamma \implies A$ and $\Gamma, A \implies C$, then $\Gamma \implies C$, where *A* and *C* are arbitrary propositions.

In class, we saw portions of the proof of admissibility for the cut rule.

Task 6. Finish the case for the proof of admissibility of cut where \mathcal{E} ends in $\supset R$, and A is not the principal formula of the last inference in \mathcal{E} .

Solution 6: We have that

 $\mathcal{D} = \Gamma \Longrightarrow A$

and

$$\mathcal{E} = \frac{ \begin{array}{c} E_1 \\ \Gamma, A, C_1 \Longrightarrow C_2 \\ \overline{\Gamma, A \Longrightarrow C_1 \supset C_2} \end{array} \supset R$$

$C = C_1 \supset C_2$	this case
$\Gamma, C_1 \Longrightarrow A$	weakening of ${\cal D}$
$\Gamma, C_1 \Longrightarrow C_2$	IH on A , weakening of \mathcal{D} , and \mathcal{E}_1
$\Gamma \Longrightarrow C_1 \supset C_2$	by rule $\supset R$ on above

Task 7. What would the derivations \mathcal{D} and \mathcal{E} look like if we wanted to do the same case as above, but with $\supset L$ instead of $\supset R$ as the last derivation in \mathcal{E} ?

Solution 7:

$$\begin{split} \mathcal{D} &= \Gamma \Longrightarrow A \\ \mathcal{E}_1 & \stackrel{E_2}{\longrightarrow} B_1 \quad \Gamma', B_1 \supset B_2, A, B_2 \Longrightarrow C \\ \mathcal{E} &= \quad \frac{\Gamma', B_1 \supset B_2, A \Longrightarrow B_1 \quad \Gamma', B_1 \supset B_2, A, B_2 \Longrightarrow C}{\Gamma', B_1 \supset B_2, A \Longrightarrow C} \supset L \end{split}$$