Constructive Logic (15-317), Spring 2021
Recitation 2: Proofs and Programs (2021-02-10)
André Platzer et al

1 Proofs Are Programs

As discussed previously in lecture, there is a tight correspondence between the structure of a derivation for a
constructive proof and a term in some particular programming language. This leads to the slogans “proofs are
programs” and “propositions are types”. The (Curry-Howard-Lambek) correspondence can be fleshed out for the
logic we're studying (intuitionistic propositional logicﬂ by the following table

Propositions Types
ANANB Ax*B
AV B A+B
ADB A—B

T 1 (unit)
1 0 (void)

Based on this we can produce a version of our rules from the previous recitation that annotate each proposition step
in the derivation with the program that it constructs. Those rules are:

M:A N:B M:AAB M:ANB
Al — AEy —— AE
(M,N): AAB fst M: A snd M : B
u —w
u:A w:B
M:AVB : :
M:A N:B N:C O:C
—VIl — Vi, VE#W
inl M:AVB infr N:AVB caseMofinlu=> N|inrw=0:C
u
u:A
M:B M:ADB N:A
o OE
fnru=>M:ADB M N :B
M: 1
TI —————— 1E
O:T abort M : A

2 Translation

We now turn to the question of translating proofs to programs and back again. In these notes, we present both for

the sake of accessibility.

Task1. ADBD>C)>(BDAD(Q)

10Of course, what makes this correspondence so remarkable is that it extends far beyond this one logic. It is quite robust and extends
to almost any well-behaved logic. It also maps between logic and functional programming and lattices which are just closed cartesian

categories

Solution 1: Proof:

—f a
A D BDCtrue A true

b
B D C true B true
DO E
C true
o I°
A D C true b
pyi
B> A D C true
>
(ADB>C)D>(B>ADC)true
Program:
fnf=>fnb=>fna=>(fa)b
Task 2. (ADB)V(AD>C)>DAD(BVCO)
Solution 2: Proof:
Let X be:
f a
A D B true A true
OE
B true
VI
BV C true
Let Y be:
g a
A D C true A true
D E
C true
VI
BV C true
The overall proof is:
fg X Y
(A D> B) trueV (A D C) true
\Vi Efrg
BV C true
ADBvVC > I
D (BVC) true S ifs

(ADB)V(AD>C)>AD(BVC)true

Program:
fnu=fnov = caseuof inl f = inl (fo)|inr g = inr(gv)

3 Inventing proof terms

Task 3. Let’s consider a new connective A. We'll give the intro and elim rules and try to come up with constructors,
destructors and reduction rules that make sense.

B true

A true

1 true

A A B true

/\Il

u
A true

B true

1 true

A A B true

Al

u 0 u 0
A true =B true -A true B true

A A B true
C true C true

ANE
C true

Solution 3: Let’s come up with constructors that make sense for A

u

u:B

M:A _—
N: L

Ift(M, .N) : A A B

u
u:A
- N:B
M: 1
rght(u.M,N) : AAB
And the destructor...
u 0 w X
u:A v:-B w: A x:B
E:AAB - -
M:C N:C

case E of Ift(u,v) = M| rght(w,x) = N : C

Now we still need to define a reduction rule for A. Reduction rules are applied when the destructor is applied to a
constructor.

case Ift(N’, u’.M’) of Ift(u, v) = M |rght(w,x) = N =" [N'/u,fnu’ = M’ /v]M
caserght(u’.N’, M") of Ift(u,v) = M|rght(w,x) = N =" [fnu’ = N'/w, M’ /x]N

4 Reductions

Let’s try reducing a term until we can no longer apply reduction rules.

Task 4.
fna=fnb= (fnf = fnp = ((fst f) (fst p), (snd f) (snd p))) (fnu = a,fnu = b) (b,a)

Solution 4:
fna=fnb= (fnp = ((fst (fnu = a,fnu = b)) (fst p),snd (fnu = a,fnu = b) (snd p))) (b, a)

Notice at this point we have a few options on how to proceed. It’s actually the case that there is a term that we will
reach no matter which order we apply reduction rules. It’s generally know as the Church Rosser theorem that if
a term finishes reducing in two ways, then they arrive at the same place. With our system we’ll always react a
“normal” form, so we can apply rules in such a way that save us the trouble of writing a lot.

fna=fnb= (fnp = ((fnu = a) (fstp), (snd{fnu = a,fnu = b)) (snd p))) (b, a)

fna= fnb= (fnp = ((fnu = a) (fstp), (fnu = b) (snd p))) (b, a)

fna= fnb= (fnp = (a,(fnu = b) (snd p))) (b, a)

fnra=fnb= (fnp = (a,b))(b,a)

fna = fnb = {a,b)

	Proofs Are Programs
	Translation
	Inventing proof terms
	Reductions

