
Constructive Logic (15-317), Spring 2021
Recitation 2: Proofs and Programs (2021-02-10)
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1 Proofs Are Programs

As discussed previously in lecture, there is a tight correspondence between the structure of a derivation for a
constructive proof and a term in some particular programming language. This leads to the slogans “proofs are
programs” and “propositions are types”. The (Curry-Howard-Lambek) correspondence can be fleshed out for the
logic we’re studying (intuitionistic propositional logic)1 by the following table

Propositions Types
A ∧ B A ∗ B
A ∨ B A + B
A ⊃ B A→ B
> 1 (unit)
⊥ 0 (void)

Based on this we can produce a version of our rules from the previous recitation that annotate each proposition step
in the derivation with the program that it constructs. Those rules are:

M : A N : B

〈M,N〉 : A ∧ B
∧I

M : A ∧ B

fst M : A
∧E1

M : A ∧ B

snd M : B
∧E2

M : A

inl M : A ∨ B
∨I1

N : B

inr N : A ∨ B
∨I2

M : A ∨ B

u : A
u

······

N : C

w : B
w

······

O : C

case M of inl u⇒ N | inr w⇒ O : C
∨Eu,w

u : A
u

······

M : B

fn u⇒M : A ⊃ B
⊃ Iu

M : A ⊃ B N : A

M N : B
⊃ E

〈〉 : >
>I

M : ⊥

abort M : A
⊥E

2 Translation

We now turn to the question of translating proofs to programs and back again. In these notes, we present both for
the sake of accessibility.

Task 1. (A ⊃ B ⊃ C) ⊃ (B ⊃ A ⊃ C)
1Of course, what makes this correspondence so remarkable is that it extends far beyond this one logic. It is quite robust and extends

to almost any well-behaved logic. It also maps between logic and functional programming and lattices which are just closed cartesian
categories
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Solution 1: Proof:

A ⊃ B ⊃ C true
f

A true
a

B ⊃ C true B true
b

C true
⊃ E

A ⊃ C true
⊃ Ia

B ⊃ A ⊃ C true
⊃ Ib

(A ⊃ B ⊃ C) ⊃ (B ⊃ A ⊃ C) true
⊃ I f

Program:
fn f => fn b => fn a => ( f a) b

Task 2. ((A ⊃ B) ∨ (A ⊃ C)) ⊃ A ⊃ (B ∨ C)

Solution 2: Proof:
Let X be:

A ⊃ B true
f

A true
a

B true
⊃ E

B ∨ C true
∨ I1

Let Y be:

A ⊃ C true
g

A true
a

C true
⊃ E

B ∨ C true
∨ I2

The overall proof is:

(A ⊃ B) true ∨ (A ⊃ C) true
f g X Y

B ∨ C true
∨ E f ,g

A ⊃ (B ∨ C) true
⊃ Ia

((A ⊃ B) ∨ (A ⊃ C)) ⊃ A ⊃ (B ∨ C) true
⊃ I f g

Program:
fn u⇒ fn v⇒ case u of inl f ⇒ inl ( f v) | inr g⇒ inr (g v)

3 Inventing proof terms

Task 3. Let’s consider a new connective f. We’ll give the intro and elim rules and try to come up with constructors,
destructors and reduction rules that make sense.

A true

B true
u

······

⊥ true

A f B true
f I1

A true
u

······

⊥ true
B true

A f B true
f I2
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A f B true

A true
u

······

¬B true
v

······

C true

¬A true
u

······

B true
v

······

C true

C true
f E

Solution 3: Let’s come up with constructors that make sense for f

M : A

u : B
u

······

N : ⊥

lft(M,u.N) : A f B

u : A
u

······

M : ⊥
N : B

rght(u.M,N) : A f B

And the destructor...

E : A f B

u : A
u

······

v : ¬B
v

······

M : C

w : ¬A
w

······

x : B
x

······

N : C

caseE of lft(u, v)⇒M | rght(w, x)⇒ N : C

Now we still need to define a reduction rule for f. Reduction rules are applied when the destructor is applied to a
constructor.

case lft(N′,u′.M′) of lft(u, v)⇒M | rght(w, x)⇒ N =⇒r [N′/u, fnu′ ⇒M′/v]M

case rght(u′.N′,M′) of lft(u, v)⇒M | rght(w, x)⇒ N =⇒r [fnu′ ⇒ N′/w,M′/x]N

4 Reductions

Let’s try reducing a term until we can no longer apply reduction rules.

Task 4.
fn a⇒ fn b⇒ (fn f ⇒ fn p⇒ 〈(fst f ) (fst p), (snd f ) (snd p)〉) 〈fnu⇒ a, fnu⇒ b〉 〈b, a〉

Solution 4:

fn a⇒ fn b⇒ (fn p⇒ 〈(fst 〈fnu⇒ a, fnu⇒ b〉) (fst p), snd 〈fnu⇒ a, fnu⇒ b〉 (snd p)〉) 〈b, a〉

Notice at this point we have a few options on how to proceed. It’s actually the case that there is a term that we will
reach no matter which order we apply reduction rules. It’s generally know as the Church Rosser theorem that if
a term finishes reducing in two ways, then they arrive at the same place. With our system we’ll always react a
“normal” form, so we can apply rules in such a way that save us the trouble of writing a lot.

fn a⇒ fn b⇒ (fn p⇒ 〈(fnu⇒ a) (fst p), (snd 〈fnu⇒ a, fnu⇒ b〉) (snd p)〉) 〈b, a〉
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fn a⇒ fn b⇒ (fn p⇒ 〈(fnu⇒ a) (fst p), (fnu⇒ b) (snd p)〉) 〈b, a〉

fn a⇒ fn b⇒ (fn p⇒ 〈a, (fnu⇒ b) (snd p)〉) 〈b, a〉

fn a⇒ fn b⇒ (fn p⇒ 〈a, b〉) 〈b, a〉

fn a⇒ fn b⇒ 〈a, b〉
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