
Constructive Logic (15-317), Spring 2021
Assignment 9: Linear Logic, Focusing, and Chaining

Instructor: André Platzer
TAs: Zhibo Chen, Avery Cowan, Julia Gu, Akshina Gupta, Ethan Rosenthal

Due: Friday, May 7, 11:59 pm

The assignments in this course must be submitted electronically through Gradescope. Written
homework PDFs and coding SML files will both go to Gradescope. For this homework, you will be
submitting both written pdf files and SML coding files:

• hw9.pdf (your written solutions)

• hw9.sml (your coding solutions)

1

Focusing and Chaining

A major theme of this course has been the discovery of theory through practice: strategies for
efficient proof search in the concrete conditions of real-world implementations are transformed into
razor-edged intellectual weapons, entirely new logics which sharpen the principal contradiction of
proof theory: the dialectic of the positive and negative (polarity).

The decomposition of truth into verification and use was our first encounter with the scientific
law, “One Divides Into Two”. By studying invertibility in the context of the sequent calculus (when
does a conclusion imply its premises?), we were able to achieve a firmer grasp of the fault-lines at
play, summarized in a dangerously over-simplified1 form below:

LEFT RULE RIGHT RULE

POSITIVE invertible non-invertible
NEGATIVE non-invertible invertible

Inversion Invertible rules can always be applied without any need for backtracking: since the
conclusion of an invertible rule implies its premises, the “future truth” of the goal is preserved
under free application of such rules. This practical insight, which is crucial for implementing a
performant proof search engine, can be codified by sharpening the logic to include deterministic
inversion phases Γ; Ω −→L C and Γ; Ω −→R C (where Ω is an ordered context of propositions).

Chaining While the above gives a clear and deterministic account of invertible rules, the non-
invertible ones beg for something similar. In this week’s lecture, we began to study chaining, which

fixes a dynamics for the non-invertible rules based on two forms of judgment, Γ −→ [A+] and

Γ; [A−] −→ C . Chaining is a technique to minimize backtracking by applying a sequence of
non-invertible rules in one go.

1 Practicing focusing

Task 1 (5 pts). Consider the following depolarized formula:

·; · −→R ((A⊃B) ∧ (A⊃ C))⊃ (A⊃ (B ∧ C))

Polarize the formula above and construct a derivation in focused logic for the resulting sequent.
(Hint: Make sure to use a single polarization for each atom). You can look at examples of focus-
ing proofs in examples/f examples.sml. There are focusing rules provided in the appendix for
reference. 2

1In structural or persistent logic, some rules which ought to be non-invertible turn out to be invertible; polarity arises
properly from the proof search dynamics of linear logic, and casts an imperfect shadow in persistent logic.

2Make sure that your proofs use the provided rules in the Appendix rather than variations from the notes.

2

2 Mean, Median...

For each of the following Prolog predicates, give all possible modalities relative to the described
intended behavior. For the sake of this problem, negatively-moded parameters must eventually
terminate when backtracked, but do not need to generate all correct possibilities. You may assume
that predicates are passed “sane” values (i.e., all arguments are of the correct form).

Task 2 (6 points).

1. lookup(Map,Key,Value) is satisfiable when (Key, Value) occurs in Map.

lookup([],_,_) :- false.

lookup([(Key, Value) | _], Key, Value).

lookup([_ | Ms], Key, Value) :- lookup(Ms, Key, Value).

2. sublist sum(L,N,S) is satisfiable when S is a sublist of L and sums to N .

sublist_sum(_,0,[]).

sublist_sum([],_,_) :- false.

sublist_sum([_ | Xs], N, Ss) :- sublist_sum(Xs, N, Ss).

sublist_sum([X | Xs], N, [X | Ss]) :- N2 is N-X, sublist_sum(Xs, N2, Ss).

3. subset sum(L,N,S) is satisfiable when S is a permutation of some sublist of L and sums to
N .

subset_sum(_,0,[]).

subset_sum([],_,_) :- false.

subset_sum([_ | Xs], N, Ss) :- subset_sum(Xs, N, Ss).

subset_sum([X | Xs], N, [X | Ss]) :- N2 is N-X, subset_sum(Xs, N2, Ss).

3 Saturation

Consider the following grammar of ground terms representing binary numbers:

n ::= ε | b0(n) | b1(n)

In class, we learned to write forward logic programs using inference rules; a forward logic
programming engine will apply these inference rules until saturation is reached, and then the result
of our program can be read from the saturated proof state. In the tasks that follow, you are free to
introduce any auxiliary predicates that you require. You need to ensure that your rules saturate
when new facts of the indicated form are added to the database.

In the problems that follow, you are required to implement forward logic programs by writing
down systems of inference rules. You may find it useful to experiment with DLV, an implementation
of forward logic programming which can be downloaded here: http://www.dlvsystem.com/dlv/.
DLV can be used to test your ideas on specific cases and quickly determine if they are likely to
work; but it is not required.

3

http://www.dlvsystem.com/dlv/

Task 3 (1 pts). Implement a forward logic program std(n) which derives the atom no iff it is not the
case that n is in standard form. You may assume that n is ground (i.e. not subject to unification).

Task 4 (3 pts). Next, implement a forward logic program succ(m,n) which derives no when it is
not the case that m + 1 = n. For the purpose of this exercise, you may assume that m and n are
ground. You may also assume that m and n are in standard form.

4 Practicing Linear Logic

Task 5 (9 pts). Prove the following judgments in linear sequent calculus, or state that they do not
hold. You can look at examples of linear sequent calculus in examples/ll examples.sml. For your
convenience, we supply a self-contained presentation of the rules of linear natural deduction in the
Appendix.

1. A(B(C true `̀ A⊗B(C true

2. (ANB)(C true `̀ A((B(C) true

3. ((A⊗>) N (B ⊗>))(C true `̀ A((B(C) true

5 Proof-Theoretic Harmony

Just like we did in the beginning of the course, we can check a local correctness condition for the
rules of linear natural deduction: proof-theoretic harmony.3 Hint: exhibiting local reductions and
expansions in linear logic is subtle: you must be sure to not constrain the contexts ∆ in your local
reductions and expansions any more than is warranted by the rules of linear logic.

Remark 1 (Linear substitution principle). When exhibiting local reductions and expansions, you
will need to use substitutions [D/u]E . These are governed by the linear substitution principle, which
states:

If
D

∆ `̀ A true and
E

∆′, u : A true `̀ B true, then
[D/u]E

∆,∆′ `̀ B true.

You must ensure that your resulting derivations have the correct contexts.

Task 6 (6 pts). Verify that the rules for the tensor ⊗ are harmonious in linear natural deduction.

6 Proof Expansions in Linear Logic

Dual to cut and proof reductions are identity and proof expansions. The admissibility of cut in
linear sequent calculus tells us that if we can derive A true from some assumptions, then those
same assumptions entitle us to use the A true resource — that is, true propositions can be used as
resources. By contrast, the admissibility of a general identity rule in linear logic

A res A true
id(A)

3Harmony is a necessary condition for the correctness of rules, but not a sufficient condition.

4

tells us the opposite — a resource A true is sufficient to conclude that A true is derivable. Just as we
proved cut admissible by an induction whose individual cases were proof reductions, we prove
identity admissible by an induction (this time just on the structure of A) whose individual cases are
proof expansions. An example expansion is shown below:

ANB true ANB true
id(ANB)

(1) A true A true By i.h. on A, as A is smaller than ANB
(2) ANB true A true By rule NL1 on (1)
(3) B true B true By i.h. on B, as B is smaller than ANB
(4) ANB true B true By rule NL2 on (3)
(5) ANB true ANB true By rule NR on (2) and (4)

Make sure to clearly state what parameter is smaller than in the current case when using your
inductive hypothesis.

Task 7 (3 pts). Complete the following expansion:

A(B true A(B true
id(A(B)

Task 8 (3 pts). Complete the following expansion:

A⊗B true A⊗B true
id(A⊗B)

7 Applications

Blocks World is a class of scenarios in which there is a table, some number of blocks which can be
stacked on top of each other, and a robotic arm which can pick up and move blocks. We will briefly
look at how to model this situation using linear logic. The following atomic predicates are used:

• empty means that the robotic arm’s hand is empty.

• holds(x) means that the hand is holding block x.

• clear(x) means that the block x does not have anything on top of it.

• on(x, y) means that the block x is directly on top of the block y.

• on table(x) means that the block x is sitting directly on the table.

• space means that there is an empty space on the table that can fit a block.

There are four types of possible state transitions in Blocks World:

1. The hand, if not holding any block, can pick up a block that is on the table and has nothing
on top of it, leaving a block-sized space on the table.

5

2. The hand, if not holding any block, can pick up the top block of a stack of blocks, exposing
the next block down.

3. The hand, if holding a block, can place it in an empty space on the table.

4. The hand, if holding a block, can place it on top of an existing stack of blocks.

We can formalize transition (a) as the following axiom in linear logic: 4

! (empty ⊗ clear(x)⊗ on table(x)(holds(x)⊗ space)

Note that we use the exponential ! here to indicate that this is unrestricted, as we may take this
action any number of times.

Task 9 (3 pts). Write linear logic axioms describing transitions (2)-(4) from above. Please provide
proposition in linear logic that describe these axioms. 5

Task 10 (2 pts). Consider the following Blocks World scenario:

Write a proposition in linear logic which expresses this configuration, assuming that the table
can fit three blocks total directly on it.

For comparison, the configuration with no blocks would be represented as empty ⊗ space ⊗
space⊗ space.

Hint: It may help to think about what invariants hold for all configurations, and then to think
about what invariants hold for all configurations with the same set of blocks.

Task 11 (2 pts). Write a proposition in linear logic expressing that the blocks are sorted alphabetically
in a single stack, with a at the bottom of the stack.

Task 12 (2 pts). Do you think the proposition from the previous task is provable from the axioms
and the initial state given in task 5 for the scenario pictured above? If so, briefly justify why. If not,
briefly justify why not. You do not need to write a proof.

Task 13 (3 pts). Suppose we are in a state with two towers of blocks and at least one empty space —
something of the form

space⊗ clear(a)⊗ on(a, b)⊗ clear(c)⊗ on(c, d)⊗ . . .

Write a procedure to swap the top blocks a and b of each tower by listing the sequence of axioms
that need to be applied and which block is being moved at each step. You will be specifying this as
list of axioms and blocks. For example if we wanted to indicate that the hand picks up block c and
then puts it on an empty space we would provide the list [(1, c), (3, c)].

4Technically, this is an axiom schema, and to get an axiom, you need to instantiate all free variables with blocks.
5Make sure that your axioms apply generically to all blocks by using a variable rather than using a specific block

6

Task 14 (2 pts). How general is your procedure? Describe two different changes to the initial state
that would require you to change your procedure, and briefly explain what goes wrong.

7

Appendix

Focusing

Positive and Negative

C− := A− ∧− B−|A+ ⊃B−|>−|P−| ↑ C+

C+ := A+ ∧+ B+|A+ ∨B+|⊥|>+|P+| ↓ C−

Inversion

Γ−; Ω+ →R A− Γ−; Ω+ →R B−

Γ−; Ω+ →R A− ∧− B− ∧R
Γ−; Ω+ →R >−

>R
Γ−; Ω+, A+ →R B−

Γ−; Ω+ →R A+ ⊃B− ⊃R

Γ−; Ω+ →L ↓P−

Γ−; Ω+ →R P−
PR

Γ−; Ω+ →L A
+

Γ−; Ω+ →R ↑ A+
↑ R

Γ−; Ω+, A+, B+ →L C
+

Γ−; Ω+, A+ ∧+ B+ →L C
+ ∧L

Γ−; Ω+ →L C
+

Γ−; Ω+,>+ →L C
+ >L

Γ−; Ω+, A+ →L C
+ Γ−; Ω+, B+ →L C

+

Γ−; Ω+, A+ ∨B+ →L C
+ ∨L

Γ−; Ω+,⊥ →L C
+ ⊥L

Γ−, ↑P+; Ω→L C
+

Γ−; Ω+, P+ →L C
+ PL

Γ−, A−; Ω+ →L C
+

Γ−; Ω+, ↓ A− →L C
↓ L

Stablization and Focus

Γ− → C+

Γ−; · →L C
+ stable

Γ− → [A+]

Γ− → A+ focusR
Γ−, A−; [A−]→ C+

Γ−, A− → C+ focusL

Chaining

Γ− → [A+] Γ→ [B+]

Γ− → [A+ ∧+ B+]
∧R

Γ→ [A+]

Γ→ [A+ ∨B+]
∨R1

Γ→ [B+]

Γ→ [A+ ∨B+]
∨R2

Γ→ [>+]
>R

Γ, ↑P+ → [P+]
PR

Γ; · →R A−

Γ→ [↓ A−]
↓ R

Γ→ [A+] Γ; [B−]→ C+

Γ; [A+ ⊃B−]→ C+ ⊃L

Γ; [A−]→ C+

Γ; [A− ∧− B−]→ C+ ∧L1
Γ; [B−]→ C+

Γ; [A− ∧− B−]→ C+ ∧L2
Γ;A+ →L C

+

Γ; [↑ A+]→ C+
↑ L

Γ; [P−]→ ↓P− PL

8

Linear Sequent Calculus

In both presentations of linear logic that we use in this course, contexts ∆ should be taken as
unordered lists; therefore, the principle of exchange is automatic. Weakening and contraction are not
included in linear logic.

P true `̀ P true init

Multiplicative Conjunction

∆ `̀ A true ∆′ `̀ B true
∆,∆′ `̀ A⊗B true

⊗R ∆′, A res, B res `̀ C true
∆, A⊗B res `̀ C true ⊗L

· `̀ 1 true 1R
∆ `̀ C true

∆,1 res `̀ C true 1L

Additive Conjunction

∆ `̀ A true ∆ `̀ B true
∆ `̀ ANB true NR

∆, A res `̀ C true
∆, ANB res `̀ C true NL1

∆, B res `̀ C true
∆, ANB res `̀ C true NL2

∆ `̀ > true >R

There is no elimination rule for the unit >.

Additive Disjunction

∆ `̀ A true
∆ `̀ A⊕B true ⊕R1

∆ `̀ B true
∆ `̀ A⊕B true ⊕R2

∆, A res `̀ C true ∆, B res `̀ C true
∆, A⊕B res `̀ C true ⊕L

∆,0 res `̀ C true 0L

There is no introduction rule for the unit 0.

Implication

∆, A res `̀ B true
∆ `̀ A(B true (R

∆ `̀ A true ∆′, B res `̀ C true
∆,∆′, A(B res `̀ C true (E

9

Linear Natural Deduction

u : A true `̀ A true
hyp

Multiplicative Conjunction

∆ `̀ A true ∆′ `̀ B true
∆,∆′ `̀ A⊗B true

⊗I
∆ `̀ A⊗B true ∆′, u : A true, v : B true `̀ C true

∆,∆′ `̀ C true
⊗Eu,v

· `̀ 1 true 1I
∆ `̀ 1 true ∆′ `̀ C true

∆,∆′ `̀ C true 1E

Additive Conjunction

∆ `̀ A true ∆ `̀ B true
∆ `̀ ANB true NI

∆ `̀ ANB true
∆ `̀ A true NE1

∆ `̀ ANB true
∆ `̀ B true NE2

∆ `̀ > true >I

There is no elimination rule for the unit >.

Additive Disjunction

∆ `̀ A true
∆ `̀ A⊕B true ⊕I1

∆ `̀ B true
∆ `̀ A⊕B true ⊕I2

∆ `̀ A⊕B true ∆′, u : A true `̀ C true ∆′, v : B true `̀ C true
∆,∆′ `̀ C true

⊕Eu,v

∆ `̀ 0 true
∆,∆′ `̀ C true 0E

There is no introduction rule for the unit 0.

Implication

∆, u : A true `̀ B true
∆ `̀ A(B true (Iu

∆ `̀ A(B true ∆′ `̀ A true
∆,∆′ `̀ B true (E

10

	Practicing focusing
	Mean, Median...
	Saturation
	Practicing Linear Logic
	Proof-Theoretic Harmony
	Proof Expansions in Linear Logic
	Applications

