
Lecture Notes on
Induction and Recursion

15-317: Constructive Logic
Frank Pfenning∗

Lecture 8
March 2, 2021

1 Introduction

At this point in the course we have developed a good formal understand-
ing how propositional intuitionistic logic is connected to computation: propo-
sitions are types, proofs are programs, and proof reduction is computation.
We have also introduced the universal and existential quantifiers, but, of
course, without some data types such as natural numbers, integers, lists,
trees, etc. we cannot reason about or compute with such data.

Accompanying the formal development in the Heyting arithmetic lec-
ture, we devote today’s lecture to develop some informal understanding of
how to reason constructively with such types, and what the programs look
like that correspond to such proofs.

We reason about data using induction. As will be explicit in the primi-
tive recursion studied in the Heyting arithmetic lecture, the computational
content of such proofs will be functions defined by recursion. The goal of
today’s lecture is to see in action the principle that induction is recursion.

We now go through several examples, presenting proofs in the usual
mathematical style and their computational contents as recursive functions.
The explicit discussion of inductive arguments here is helpful when per-
forming induction on structures other than natural numbers.

∗Edits by André Platzer

LECTURE NOTES MARCH 2, 2021



L8.2 Induction and Recursion

2 Example: Integer Square Root

At first, we might think of specifying the square root with the theorem

∀x:nat.∃y:nat. y2 = x

This is a great place to start: if we could prove that, the function extracted
would take an integer x as an argument and return a witness y =

√
x and a

proof that indeed y2 = x. Unfortunately, this is not a theorem because not
every natural number is a square. So we have to allow for rounding down
or up. The following specification

∀x:nat. ∃y:nat. y2 ≤ x ∧ x < (y + 1)2

does in fact round down. For example, for x = 10 the witness y = 3 will
have the property 32 = 9 ≤ 10 ∧ 10 < 16 = (3 + 1)2.

Now how do we prove this? The natural attempt is to prove it by math-
ematical induction on x. This means to prove it for x = 0, then assume the
theorem for x and prove it for x + 1. This form of induction is also called
weak induction because the induction hypothesis only assumes the state-
ment for x. We will encounter complete induction, alias strong induction later
in this lecture, where the induction hypothesis assumes it for 0, 1, 2, . . . , x.

Theorem 1 (Integer Square Root) ∀x:nat.∃y:nat. y2 ≤ x ∧ x < (y + 1)2

Proof: By mathematical induction on x.

Base: x = 0. Then we pick the witness y = 0 because 02 = 0 ≤ 0 ∧ 0 < 1 =
(0 + 1)2.

IH: Assume ∃y:nat. y2 ≤ x ∧ x < (y + 1)2.

Step: We have to prove ∃y:nat. y2 ≤ x+ 1 ∧ x+ 1 < (y + 1)2.

∃y:nat. y2 ≤ x ∧ x < (y + 1)2 by IH
a2 ≤ x ∧ x < (a+ 1)2 for some a, by ∃E

Now we distinguish two cases: x + 1 is still less than (a + 1)2 or it is
greater than or equal to (a+ 1)2. When given x and a, we can decide
this inequality so the case distinction is constructively permissible.

Case: x+ 1 < (a+ 1)2. Then we pick the witness y = a because

LECTURE NOTES MARCH 2, 2021



Induction and Recursion L8.3

a2 ≤ x+ 1 since a2 ≤ x
x+ 1 < (a+ 1)2 this case

Case: x+ 1 ≥ (a+ 1)2. Then we pick the witness y = a+ 1 because

x+ 1 = (a+ 1)2 by case since x < (a+ 1)2

(a+ 1)2 ≤ x+ 1 from previous line
x+ 1 < (a+ 2)2 since x+ 1 = (a+ 1)2 < (a+ 2)2

�

For clarity, we call out the induction hypothesis (IH) explicitly in the above
proof, even if this is not necessary in such simple cases.

What is the computational content of this proof? It is a recursive func-
tion, where an appeal to the induction hypothesis corresponds to a recur-
sive call. When a witness for an existential is exhibited in the proof, we
return this witness. We ignore here the attendant proof that the returned
witness is in fact correct, so the function below will have only a portion of
all of the information of the proof.

fun isqrt 0 = 0
| isqrt (x+1) =

let val a = isqrt x
in if x+1 < (a+1)*(a+1)

then a
else a+1

end

This does not literally work in Standard ML because we cannot pattern-
match against x+ 1, so we have to rewrite this slightly. Also, we are using
the built-in type int instead of nat.

fun isqrt 0 = 0
| isqrt x = (* x > 0 *)

let val a = isqrt (x-1)
in if x < (a+1)*(a+1)

then a
else a+1

end

This algorithm is not what one would think of as an implementation of a
square root. To compute the integer square root of x it runs through all the
numbers up to x, essentially adding 1 every time we hit the next square (the

LECTURE NOTES MARCH 2, 2021



L8.4 Induction and Recursion

else case of the conditional). Computationally this is expensive in time. It
is also expensive in space because the function is not tail recursive.

A different proof of the same theorem corresponds to a more efficient
function (see Section 5).

3 Example: Exponentiation

We define the mathematical function of exponentiation on natural numbers
by b0 = 1 and bn+1 = b× bn for n > 0. We can prove a theorem that natural
numbers are closed under exponentiation, so there is an implementation.

Theorem 2 (Exponential closure) ∀b:nat.∀n:nat. ∃y:nat. y = bn

Proof: By mathematical induction on n.

Base: n = 0. Then pick y = 1 because 1 = b0.

IH: Assume ∃y:nat. y = bn.

Step: We have to show that ∃y:nat. y = bn+1.

∃y:nat. y = bn by IH
a = bn for some a, by ∃E
Pick y = b× a = b× bn = bn+1 by def
∃y:nat. y = bn+1 by ∃I

�

The extracted function corresponding to this proof is entirely straightfor-
ward. We write it directly in Standard ML form.

fun exp b 0 = 1
| exp b n = (* n > 0 *)

let val a = exp b (n-1)
in b * a end

Again, this function is not tail-recursive since we take the result a returned
by the recursive call and still multiply it by b instead of returning directly.

To obtain a tail-recursive version, we need to find a different proof of
the same specification! From our experience in functional programming
we know that we need to carry along an accumulator for the result in an
auxiliary function. Such an auxiliary function corresponds to a lemma on

LECTURE NOTES MARCH 2, 2021



Induction and Recursion L8.5

the mathematical side. The accumulator c is an additional argument, so the
lemma has one additional quantifier.

∀b:nat. ∀n:nat.∀c:nat. ∃y:nat. ???

The tricky question is what does the lemma express? Because we multiply
the accumulator by the base b at every recursive call, the generalization is
also stated multiplicatively. In general, though, coming up with an appro-
priate generalization of the theorem is a creative and difficult task.

Lemma 3 ∀b:nat.∀n:nat. ∀c:nat.∃y:nat. y = c× bn

Proof: By mathematical induction on n.

Base: n = 0. Then pick y = c because y = c = c× b0.

IH: Assume ∀c:nat.∃y:nat. y = c× bn.

Step: We have to show ∀c:nat. ∃y:nat. y = c × bn+1, that is for the sake of
using ∀I , for an arbitrary c1 we have to show ∃y:nat. y = c1 × bn+1.

∀c:nat.∃y:nat. y = c× bn by IH
∃y:nat. y = (c1 × b)× bn using c = c1 × b, by ∀E
a = (c1 × b)× bn = c1 × bn+1 for some a, by ∃E
∃y:nat. y = c1 × bn+1 picking y = a and ∃I
∀c:nat. ∃y:nat. y = c× bn+1 by ∀I

�

Now a second proof for Theorem 2 no longer requires a proof by induction,
directly calling on the above lemma instead.

Theorem 4 (Exponential closure) ∀b:nat.∀n:nat.∃y:nat. y = bn

Proof: From the preceding lemma by using c = 1 since 1× bn = bn �

The computational content is now two functions, exp2_aux correspond-
ing to the lemma, and exp2 for the theorem.

fun exp2_aux b 0 c = c
| exp2_aux b n c = (* n > 0 *)
let val a = exp2_aux b (n-1) (c*b)
in a end

fun exp2 b n = exp2_aux b n 1

LECTURE NOTES MARCH 2, 2021



L8.6 Induction and Recursion

The auxiliary function is now tail recursive because the witness a for y in
the proof is just the witness from the appeal to the induction hypothesis.
We can shorten the program slightly to make this more immediate:

fun exp2_aux b 0 c = c
| exp2_aux b n c = (* n > 0 *)

exp2_aux b (n-1) (c*b)

fun exp2 b n = exp2_aux b n 1

There is still a disadvantage to this implementation in that it carries out
n multiplications. There is a yet more efficient implementation which car-
ries out only O(log(n)) multiplications by taking advantage of the observa-
tion that b2n = (b2)n. That is, we can calculate b2n by instead calculating bn2
for a different base b2. The corresponding inductive proof has a somewhat
different structure from the proofs so far, because the step foreshadowed
above reduces computing b2n to computing (b2)n, which means given an
(even) n > 0, we have to apply the induction hypothesis to n/2. A similar
reasoning will apply for odd numbers. Fortunately, n/2 < n for n > 0, so
the principle of complete induction allows this pattern of reasoning.

The statement of the lemma itself remains unchanged, only its proof.

Lemma 5 ∀b:nat. ∀n:nat.∀c:nat. ∃y:nat. y = c× bn

Proof: By complete induction on n.

Base: n = 0. Then, as before, pick y = c.

IH: ∀b:nat.∀k:nat. (k < n⊃ ∀c:nat. ∃y:nat. y = c× bk)

Step: n > 0. Then we distinguish two cases: n is even or n is odd. Presum-
ably this can be decided in our theory of natural numbers.

Subcase: n = 2k for some k < n. We have to prove ∃y:nat. y = c1×bn1
for some arbitrary c1 and b1 (by ∀I).

∃y:nat. y = c1 × (b1 × b1)
k

by IH for b = b1 × b1, k < n, and c = c1
a = c1 × (b1 × b1)

k for some a, by ∃E
Pick y = a = c1 × (b21)

k = c1 × b2k1 = c1 × bn1
∃y:nat. y = c1 × bn1 by ∃I

Subcase: n = 2k + 1 for some k < n. We have to prove ∃y:nat. y =
c1 × bn1 for some arbitrary c1 and b1 (by ∀I).

LECTURE NOTES MARCH 2, 2021



Induction and Recursion L8.7

∃y:nat. y = (c1 × b1)× (b1 × b1)
k

by IH for b = b1 × b1, k < n, and c = c1 × b
a = (c1 × b1)× (b1 × b1)

k for some a, by ∃E
Pick y = a = (c1 × b1)× (b21)

k = c1 × b2k+1
1 = c1 × bn1

∃y:nat. y = c1 × bn1 by ∃I

�

This proof uses complete induction, since while proving the case n > 0
its induction hypothesis assumes the theorem already for all k < 0. Note
how useful it is to explicitly clarify IH (although a different quantifier or-
dering ∀k(k < n⊃∀b∀c∃y . . .) would also have worked). During the induc-
tion step to prove it for n > 0, it is crucial that IH is only used for k that are
indeed strictly smaller than n, as explicitly indicated in the above proof.

The proof of the theorem does not change, but the extracted function
now calls upon a different version of the auxiliary function because we
have given a different proof. Note that it is still tail recursive, and we were
able to put the accumulator to good use in the case of an odd number.

fun exp3_aux b 0 c = c
| exp3_aux b n c = (* n > 0 *)

if n mod 2 = 0
then exp3_aux (b*b) (n div 2) c
else exp3_aux (b*b) ((n-1) div 2) (c*b)

fun exp3 b n = exp3_aux b n 1

4 Example: Warshall’s Algorithm for Graph Reacha-
bility

This example is even less formal and sketchier than the previous section. It
concerns induction about structures other than natural numbers, particu-
larly lists.

To start with, how do we even specify graph reachability? We assume
we are given a graph G via a type of nodes N and a collection of edges E
connecting nodes. We consider the graph G fixed, so we won’t repeatedly
mention it in every proposition in the rest of this section.

We also have a notion of a path through a graph, following the set of
edges. We write path(x, y) when there is a path p in the graph G connecting

LECTURE NOTES MARCH 2, 2021



L8.8 Induction and Recursion

x and y.1 We can then specify graph reachability as

∀x:N. ∀y:N. path(x, y) ∨ ¬path(x, y)

Classically, this is a triviality, because it has the form ∀x.∀y.A ∨ ¬A which
is classically obviously true by the law of excluded middle. Constructively,
a proof will have to show whether, given an x and y, there is a path con-
necting them or not. In addition, the proof of path(x, y) should exhibit such
a path, while a proof of ¬path(x, y) should derive a contradiction from the
assumption that there is one. As in the previous examples, we will ignore
some of the computational content of the proof, focusing on returning the
boolean true if there is a path and false if there is none. In a later lecture we
may see how we can systematically and formally hide some of the compu-
tational contents of proofs while keeping other information.

Now the statement above could be proved in a number of ways. For
example, we might proceed by induction over the length of the potential
path, or by induction over the number of unvisited nodes in the graph,
each giving rise to different implementations. Here, will use a different
idea: consider a fixed enumeration of the vertices in the graph (a list of
vertices) and proceed by induction over the structure of this list. Given
some list V of vertices, we write pathV (x, y) if there is a path p connecting x
and y using only vertices from V as interior nodes. That is, the path p must
start with x, finish with y, and all other vertices on p must be in V . Here,
pathV (x, y) is considered as a formula in three arguments, x, y and list V .

Now we mildly generalize our statement so we can prove it inductively:

∀V :N list.∀x:N. ∀y:N. pathV (x, y) ∨ ¬pathV (x, y)

Our original theorem follows easily by picking V = N , because then the
path is allowed to contain all vertices.

Theorem 6 ∀V :N list. ∀x:N. ∀y:N. pathV (x, y) ∨ ¬pathV (x, y)

Proof: By induction on the structure of V .

Base: V = nil, the empty list. Then pathnil(x, y) exactly if there is a direct
edge from x to y because no interior nodes are allowed.

IH: Assume ∀x:N. ∀y:N. pathW (x, y) ∨ ¬pathW (x, y).

1Other representations are possible that make the path explicit, but that is not necessary
to understand the basic idea.

LECTURE NOTES MARCH 2, 2021



Induction and Recursion L8.9

Step: Consider V = z :: W for some vertex z with remaining list W . To
show pathV (x, y)∨¬pathV (x, y) we use IH and distinguish two cases:

Case: pathW (x, y). Then also pathz::W (x, y) since we do not even need
to use the additional vertex z to find a path from x to y in V .

Case: ¬pathW (x, y). Now we use IH again on W , but this time on x
and z, so pathW (x, z) ∨ ¬pathW (x, z). We once again distinguish
two cases:

Subcase: pathW (x, z). Now we use IH a third time to see if
there is a path from z to y using only W : pathW (z, y) ∨
¬pathW (z, y). Again, we distinguish these cases:
Subsubcase: pathW (z, y). Since also pathW (x, z) we can con-

catenate these two paths to obtain pathz::W (x, y). Now z
has to be added, because it is on the interior of the path
that goes from x to y, but that’s fine since V = z :: W .

Subsubcase: ¬pathW (z, y). Then ¬pathz::W (x, y): if there is
no path from x to y entirely over W , allowing z does not
help when there is no path from z to y over W .

Subcase: ¬pathW (x, z). Then also ¬pathz::W (x, y) because, simi-
lar to the previous subsubcase, adding z does not help when
it has no path from x.

�

In writing out the computational content we replace the if-then-else
constructs with corresponding uses of the short-circuit evaluation orelse
and andalso, for the sake of brevity and readability.

b orelse c == if b then true else c
b andalso c == if b then c else false

The code then turns out to be exceedingly compact.

fun warshall edge (nil) x y = edge x y
| warshall edge (z::W) x y =

warshall edge W x y orelse
(warshall edge W x z andalso warshall edge W z y)

The compiler tells us

val warshall = fn : (’a -> ’a -> bool) -> ’a list -> ’a -> ’a -> bool

LECTURE NOTES MARCH 2, 2021



L8.10 Induction and Recursion

which means that this works for any type of vertices ’a as long as we have
a function representing the edge relation.

This does not quite capture Warshall’s algorithm yet: to get the right
complexity we need to represent the function warshall edge V as a two-
dimensional boolean array indexed by x and y, and for each z run through all
pairs x and y to fill it with booleans.2 This transformation can be carried out
informally, or rigorously as shown in [Pfe90]. Of course, for small graphs
the SML source code including a small example works just fine.

If now look back at the proof we can see that it actually contains enough
information to also extract the path when there is one. If a path is rep-
resented by a list of vertices, the result of of an extracted function which
return the path if there is one will have type

val warshall2 : (’a -> ’a -> bool) -> ’a list
-> ’a -> ’a -> ’a list option

which is implemented by the following function

fun warshall2 edge (nil) x y =
if edge x y then SOME [x,y] else NONE

| warshall2 edge (z::W) x y =
case warshall2 edge W x y
of SOME p => SOME p
| NONE => (case warshall2 edge W x z

of SOME q => (case warshall2 edge W z y
of SOME r => SOME (q @ tl r)
| NONE => NONE)

| NONE => NONE)

5 Bonus Example: Tail-Recursive Integer Square Root

We did not have time to discuss this in lecture, but we may consider how
we can make the integer square root example more efficient. In particular,
we should see if we can make it tail recursive. The key idea is the same that
might occur to anyone when ask the implement integer square root: we
add a counter c which we increment until c2 exceeds x. The problem now
becomes how to state the theorem and how to find a corresponding proof.

The counter needs to become a new argument of an auxiliary function,
so in the lemma there will be additional quantifier. All the quantifiers range

2See, for example, the Wikipedia page on then Floyd-Warshall algorithm

LECTURE NOTES MARCH 2, 2021

https://en.wikipedia.org/wiki/Floyd-Warshall_algorithm


Induction and Recursion L8.11

over natural numbers, so we omit the type. We try

∀x. ∀c. c2 ≤ x⊃ ∃y. y2 ≤ x ∧ x < (y + 1)2

At first sight this might look wrong since c does not occur in the scope of
the quantifier on y, but the information about c may help us to construct
such a y anyway.

In the proof, what becomes smaller as we count c upward? Clearly, it
is the distance between c and x or, more precisely, the distance between
c2 and x. When this distance becomes 0, we terminate the recursion. This
leads to the following lemma, proof, and theorem:

Lemma 7 ∀x. ∀c. c2 ≤ x⊃ ∃y. y2 ≤ x ∧ x ≤ (y + 1)2

Proof: By complete induction on x− c2.
We have to prove, for an arbitrary x and c with c2 ≤ x that ∃y. y2 ≤

x ∧ x < (y + 1)2. We distinguish two cases:

Case: x < (c + 1)2. Then we can pick y = c since c2 ≤ x (by assumption)
and x < (c+ 1)2 (this case).

Case: (c+ 1)2 ≤ x. Then we can apply the induction hypothesis, precisely
because (c+ 1)2 ≤ x and x− (c+ 1)2 = x− c2 − 2c− 1 < x− c2.

∃y. y2 ≤ x ∧ x < (y + 1)2 by ind. hyp.

But this is exactly what we needed to prove.

�

Theorem 8 ∀x. ∃y. y2 ≤ x ∧ x ≤ (y + 1)2

Proof: Use the lemma for c = 0, which satisfies the requirement because
c2 = 0 ≤ x for any x. �

The extracted function then looks as follows:

fun isqrt2_aux x c = (* c*c <= x *)
if x < (c+1)*(c+1)
then c
else (* (c+1)*(c+1) <= x *)

isqrt2_aux x (c+1)

fun isqrt2 x = isqrt2_aux x 0

LECTURE NOTES MARCH 2, 2021



L8.12 Induction and Recursion

We can take the analysis a bit further and try to ask: what does an in-
duction over x − c2 actually mean? One possible interpretation is to add
another variable d and constrain it to be equal to x−c2 so we apply complete
induction on this variable.

Lemma 9 ∀x.∀d.∀c. c2 ≤ x ∧ d = x− c2 ⊃ ∃y. y2 ≤ x ∧ x ≤ (y + 1)2

Proof: Proof is by complete induction on d. Assume we have an x, d, and
c such that c2 ≤ x and d = x− c2.

Previously, we distinguished cases based on whether x < (c + 1)2 or
not. But we can rephrase test in terms of d: x < c2+2c+1 iff x− c2 < 2c+1
iff d < 2c+ 1.

Case: d < 2c + 1. Then y = c satisfies the theorem because also c2 ≤ x by
assumption and x < (c+ 1)2 in this case.

Case: d ≥ 2c+1. Then (c+1)2 ≤ x and 0 ≤ x− (c+1)2 = x− c2− 2c− 1 =
d− 2c− 1 < d so we can apply the induction hypothesis on d− 2c− 1
and c+ 1 to obtain some y such that y2 ≤ x ∧ x ≤ (y + 1)2.

�

Theorem 10 ∀x. ∃y. y2 ≤ x ∧ x ≤ (y + 1)2

Proof: Use the lemma for d = x and c = 0, which satisfy the requirements
because c2 = 0 ≤ x for any x and x− c2 = x �

The code, leaving out any extraneous proof information:

fun isqrt3_aux x d c =
if d < 2*c+1
then c
else isqrt3_aux x (d-2*c-1) (c+1)

fun isqrt3 x = isqrt3_aux x x 0

Note that this remaind tail recursive and avoids the potentially “costly”
multiplication (c + 1) × (c + 1) on every recursive call from the previous
version.

References

[Pfe90] Frank Pfenning. Program development through proof transforma-
tion. Contemporary Mathematics, 106:251–262, 1990.

LECTURE NOTES MARCH 2, 2021


	Introduction
	Example: Integer Square Root
	Example: Exponentiation
	Example: Warshall's Algorithm for Graph Reachability
	Bonus Example: Tail-Recursive Integer Square Root

