
Lecture Notes on
Heyting Arithmetic

15-317: Constructive Logic
Frank Pfenning∗

Lecture 7
February 25, 2021

1 Introduction

In this lecture we discuss the data type of natural numbers. They serve
as a prototype for a variety of inductively defined data types, such as lists
or trees, because they are the easiest case of a data type generated by a
constructor taking the data type itself as an argument (successor) from an
atomic constructor (0). Together with quantification from the previous lec-
ture, this allow us to reason constructively about natural numbers and
extract corresponding functions. The constructive system for reasoning
logically about natural numbers is called intuitionistic arithmetic or Heyt-
ing arithmetic [Hey56]. The classical version of the same principles is called
Peano arithmetic [Pea89]. Both of these are usually introduced axiomatically
rather than as an extension of natural deduction as we do here.

2 Induction

As usual, we think of the type of natural numbers as defined by its intro-
duction form. Note, however, that nat is a type rather than a proposition. It
is possible to completely unify these concepts to arrive at type theory, some-
thing we might explore later in this course. For now, we just specify cases
for the typing judgment t : τ , read term t has type τ , that was introduced
in the previous lecture on quantification, but for which we have seen no

∗Edits by André Platzer.

LECTURE NOTES FEBRUARY 25, 2021



L7.2 Heyting Arithmetic

specific instances yet. We distinguish this from M : A which has the same
syntax, but relates a proof term to a proposition instead of a term to a type.
We now fill the typing judgment on terms with life as t : nat compared to
its abstract treatment in the quantification lecture.

There are two introduction rules, one for zero and one for successor.

0 : nat
natI0

n : nat

sn : nat
natIs

Intuitively, these rules express that 0 is a natural number (natI0) and that
the successor sn is a natural number if n itself is a natural number. This
definition has a different character from previous definitions. We defined
the meaning of A ∧ B true from the meaning of A true and of B true, all of
which are propositions. It is even different from the proof term assignment
rules where, for example, we defined 〈M,N〉 : A∧B in terms of M : A and
N : B. In each case, the proposition itself is decomposed into its parts.

The types in the conclusion and premise of the natIs rules stay the same,
namely nat. Fortunately, the term n in the premise is a part of the term sn
in the conclusion, so the definition is not circular, because the judgment
in the premise is still smaller than the judgment in the conclusion even if
this is not because of the types. In (verificationist) constructive logic, truth
is defined by the introduction rules. The resulting implicit principle, that
nothing is true unless the introduction rules prove it to be true, is of deep
significance here. Nothing else is a natural number, except the objects con-
structed via natIs from natI0. The rational number 7

4 cannot sneak in claim-
ing to be a natural number (which, by natIs would also make its successor
11
4 claim to be natural).

But what should the elimination rule be? We cannot decompose the
proposition into its parts, as it has no parts, so we decompose the term in-
stead. Natural numbers have two introduction rules just like disjunctions.
Their elimination rule, thus, also proceeds by cases, accounting for the pos-
sibility that a given n of type nat is either 0 or sx for some x. A property
C(n) is true if it holds no matter whether the natural number n was intro-
duced by natI0 so is zero or was introduced by natIs so is a successor:

n : nat C(0) true

x : nat C(x) true
u

...
C(sx) true

C(n) true
natEx,u

LECTURE NOTES FEBRUARY 25, 2021



Heyting Arithmetic L7.3

In words: In order to prove property C of a natural number n we have
to prove C(0) and also C(sx) under the assumption that C(x) for a new
parameter x. The scope of x and u is just the rightmost premise of the rule.
This corresponds exactly to proof by induction, where the proof of C(0)
is the base case, and the proof of C(sx) from the assumption C(x) is the
induction step. That is why natEx,u is also called an induction rule for nat.

We managed to state this rule without any explicit appeal to universal
quantification, using parametric judgments instead. We could, however,
write it down with explicit quantification, in which case it becomes:

∀n:nat. C(0)⊃ (∀x:nat. C(x)⊃ C(sx))⊃ C(n)

for an arbitrary property C of natural numbers. It is an easy exercise to
prove this with the induction rule above, since the respective introduction
rules lead to a proof that exactly has the shape of natEx,u.

All natural numbers are zero or successors. To illustrate elimination rule
natEx,u in action, we start with a very simple property: every natural num-
ber is either 0 or has a predecessor. First, a detailed induction proof in the
usual mathematical style and then a similar formal proof.

Theorem: ∀x:nat. x = 0 ∨ ∃y:nat. x = s y.
Proof: By induction on x.

Base: x = 0. Then the left disjunct is true.
Step: x = sx′. That is, x is the successor of some natural num-

ber (x′) for which the theorem holds. Then the right dis-
junct is true: pick y = x′ and observe x = sx′ = s y.

Next we write this in the formal notation of inference rules. We sug-
gest the reader try to construct this proof step-by-step; we show only the
final deduction. We assume there is either a primitive or derived rule of
inference called refl expressing reflexivity of equality on natural numbers
(n = n). We use the same names as in the mathematical proof.

x : nat

0 = 0 true
refl

0 = 0 ∨ ∃y:nat. 0 = s y true
∨I1

x′ : nat sx′ = sx′ true
refl

∃y:nat. sx′ = s y true
∃I

sx′ = 0 ∨ ∃y:nat. sx′ = s y true
∨I2

x = 0 ∨ ∃y:nat. x = s y true natEx′,u

∀x:nat. x = 0 ∨ ∃y:nat. x = s y true
∀Ix

LECTURE NOTES FEBRUARY 25, 2021



L7.4 Heyting Arithmetic

This is a simple proof by cases and, in this particular proof, does not even
use the induction hypothesis x′ = 0 ∨ ∃y:nat. x′ = s y true, which would
have been labeled u. It is also possible to finish the proof by eliminating
from that induction hypothesis, but the proof then ends up being more
complicated. At our present level of understanding, the computational
counterpart for the above proof might be a zero-check function for natu-
ral numbers. It takes any natural number and provides the left disjunct if
that number was 0 while providing the right disjunct if it was a successor.
Making use of the witness, we will later discover more general computa-
tional content once we have a proof term assignment.

In the application of the induction rule natE we used the propertyC(x),
which is a proposition with the free variable x of type nat, saying that x is
either zero or a successor of some natural number. More explicitly:

C(x) = (x = 0 ∨ ∃y:nat. x = s y)

While getting familiar with formal induction proofs it may be a good idea
to write out the induction formula explicitly.

3 Equality

We already used equality in the previous example, without justification, so
we now introduce it properly into our formal system. Equality is certainly
a central part of Heyting (and Peano) arithmetic.

There are many ways to define and reason with equality. The one we
choose here is the one embedded in arithmetic where we are only con-
cerned with numbers. Thus we are trying to define x = y only for natural
numbers x and y. Of course, x = y must be a proposition, not a term. As
a proposition, we will use the techniques of the course and define its truth
by means of introduction and elimination rules!

The introduction rules for equality are straightforward based on the two
introduction rules for natural numbers.1

0 = 0 true
=I00

x = y true

sx = s y true
=Iss

If this is our definition of equality on natural numbers, how can we use
the knowledge that n = k? If n and k are both 0, we cannot learn anything,

1As a student observed in lecture, we could also just state x = x true as an inference rule
with no premise. However, it is difficult to justify the elimination rules we need for Heyting
arithmetic from this definition.

LECTURE NOTES FEBRUARY 25, 2021



Heyting Arithmetic L7.5

because no knowledge was used for =I00. If both are successors, we know
their argument must be equal. Finally, if one is a successor and the other
zero, then this is contradictory and we can derive anything.

no rule E00

0 = sx true
C true

=E0s
sx = 0 true
C true

=Es0

sx = s y true

x = y true
=Ess

Local soundness is very easy to check, but what about local completeness?
It turns out to be a complicated issue so we will not discuss it here.

4 Equality is Reflexive

As a simple inductive theorem we show the reflexivity of equality.

Theorem 1 ∀x:nat. x = x

Proof: By induction on x.

Base: x = 0. Then, indeed, 0 = 0 by rule =I00

Step: Assume the theorem x = x already holds for x and show sx = sx
for the successor sx, which follows by =Iss.

�

This proof is small enough so we can present it in the form of a natural
deduction. For induction, we use C(n) = (n = n).

n : nat 0 = 0 true
=I00

x = x true
u

sx = sx true
=Iss

n = n true
natEx,u

∀x:nat. x = x true
∀In

The hypothesis x : nat introduced by natEx,u is implicitly used to establish
that x = x is a well-formed proposition, but is not explicit in the proof.

The above theorem justifies a derived rule of inference:

x : nat

x = x true
refl

by using ∀E with the theorem just proved. We usually suppress the premise
x : nat since we already must know x : nat for the proposition x = x to be
well-formed at all. This is the rule we used in Section 2.

LECTURE NOTES FEBRUARY 25, 2021



L7.6 Heyting Arithmetic

5 Primitive Recursion

Reconsidering the elimination rule for natural numbers, we notice that we
exploit the knowledge that n : nat, but we only do so when we are trying to
establish the truth of a proposition, C(n). However, we are equally justified
in using n : nat when we are trying to establish not another proposition
C(n) but another typing judgment of the form t : τ . The rule, also called
rule of primitive recursion for nat, then becomes

n : nat t0 : τ

x : nat r : τ
...

ts : τ

R(n, t0, x. r. ts) : τ
natEx,r

Here, R is a new term constructor,2 the term t0 is the term used for the
zero case where n = 0, and the term ts captures the successor case where
n = sn′. In the latter case x is a new parameter introduced in the rule
that stands for the predecessor n′. And r is a new parameter that stands
for the result of the function R when applied to that predecessor n′, which
corresponds to an appeal to the induction hypothesis. Following a common
notational convention of logic, the dots in the notation x. r. ts indicate that
occurrences of x and r in ts are bound with scope ts. The fact that both are
bound corresponds to the newly introduced assumptions x : nat and r : τ
that are both introduced by natEx,r to prove ts : τ in the rightmost premise.

The local reduction rules may help explain this. We first write them
down just on the terms, where they are computation rules.

R(0, t0, x. r. ts) =⇒R t0
R(sn′, t0, x. r. ts) =⇒R [R(n′, t0, x. r. ts)/r][n

′/x] ts

The first argument of R carries the recursion. The first reduction reduces
recursors at 0 to their designated result t0 coming from the second argu-
ment. The second reduction reduces, at a successor sn′, to the term ts with
parameter x instantiated to the concrete number n′ for the inductive hy-
pothesis and with parameter r instantiated to the particular value that the
same recursor R had at n′. So the argument t0 of R indicates the output to
use for n = 0 while ts indicates the output to use for n = sx as a function of
the smaller number x and of r for the recursive outcome of R(n, t0, x. r. ts).

2The name R starting the proof term suggests recursion

LECTURE NOTES FEBRUARY 25, 2021



Heyting Arithmetic L7.7

These are still somewhat unwieldy, so we consider a more readable
schematic form, called primitive recursion schema. If we define f by cases

f(0) = t0
f(s x) = ts(x, f(x))

where the only occurrence of f on the right-hand side is the one shown
applied to x, then we could have equivalently defined f explicitly with:

f = (fn n⇒ R(n, t0, x. r. ts(x, r)))

To verify this, apply f to 0 and apply the reduction rules and also apply f
to sn for an arbitrary n and once again apply the reduction rules.

f(0) =⇒R R(0, t0, x. r. ts(x, r))
=⇒R t0

noting that the x in x.r.ts(. . .) is not a free occurrence (indicated by the
presence of the dot in x.) since it corresponds to the hypothesis x : nat in
natEx,r. Finally

f(sn) =⇒R R(sn, t0, x. r. ts(x, r))
=⇒R ts(n,R(n, t0, x. r. ts(x, r)))
= ts(n, f(n))

The last equality is justified by a (meta-level) induction hypothesis, because
we are trying to show that f(n) = R(n, t0, x. r. ts(x, r)) and, when showing
it for sn, can assume to already have established it for the smaller n itself.

So far, our knowledge of typing judgments is limited to natural num-
bers. Before we use primitive recursion for something exciting, we first
need to understand how it works on more general types τ .

6 Function Types

For moving beyond natural number types, we consider the type τ→ σ that
a term has that is a function from input of type τ to output of type σ. We
also reuse the notion of functional abstraction (already used to describe
proof terms of A ⊃ B and ∀x:τ.A(x) to describe functions at the level of
data.3 We write τ→σ for functions from type τ to type σ and present them

3The case for unifying all these notions in type theory looks pretty strong at this point.

LECTURE NOTES FEBRUARY 25, 2021



L7.8 Heyting Arithmetic

here without further justification since they just mirror the kinds of rules
we have seen multiple times already.

x : τ...
s : σ

fnx:τ ⇒ s : τ → σ
→I s : τ → σ t : τ

s t : σ
→E

The local reduction is

(fnx:τ ⇒ s) t =⇒R [t/x]s

Now we can define double via the schema of primitive recursion.

double(0) = 0
double(sx) = s (s (doublex))

We can read off the closed-form definition if we wish:

double = (fnn⇒ R(n, 0, x. r. s (s r)))

After having understood this, we will be content with using the schema
of primitive recursion. We define addition and multiplication as exercises.

plus(0) = fn y ⇒ y
plus(sx) = fn y ⇒ s ((plusx) y)

Notice that plus is a function of type nat→ (nat→ nat) that is primitive
recursive in its (first and only) argument.

times(0) = fn y ⇒ 0
times(sx) = fn y ⇒ (plus ((timesx) y)) y

Modulo currying/uncurrying to the appropriate function types, these
are the expected definitions of addition/multiplication of natural numbers.

7 Proof Terms

With proof terms for primitive recursion in place, we can now revisit and
make a consistent proof term assignment for the elimination form with re-
spect to the truth of propositions. It stands to reason to use the same proof
terms as for typing judgments.

LECTURE NOTES FEBRUARY 25, 2021



Heyting Arithmetic L7.9

n : nat M0 : C(0)

x : nat u : C(x)
u

...
Ms : C(sx)

R(n,M0, x. u.Ms) : C(n)
natEx,u

Except for the type of judgment (proof terms and propositions versus typ-
ing judgments), this elimination rule natEx,u is the same as the (primitive)
recursion rule natEx,r, just on propositions instead of data.

The local reductions we discussed before for terms representing data,
also work for these proofs terms, because they are both derived from slightly
different variants of the elimination rules (one with proof terms, one with
data terms).

R(0,M0, x. u.Ms) =⇒R M0

R(sn′,M0, x. u.Ms) =⇒R [R(n′,M0, x. u.Ms)/u][n
′/x]Ms

Computationally, we can conclude that proofs by induction correspond to func-
tions defined by primitive recursion, and that they compute in the same way!

Returning to the earlier example, we can write the proof terms.

Theorem: ∀x:nat. x = 0 ∨ ∃y:nat. x = s y.
Proof: By induction on x.

Base: x = 0. Then the left disjunct is true.

Step: x = sx′. Then the right disjunct is true: pick y = x′ and
observe x = sx′ = s y.

The extracted function we obtain by marking its natural deduction proof
with proof terms is the predecessor function (note how the use of inl ver-
sus inr correspond to the zero check that predecessor functions need to
perform on natural numbers as 0 has no predecessor):

pred = fnx:nat⇒ R(x, inl , x. r. inr(x, ))

Here we have suppressed the evidence for equalities, since we have not
yet introduced proof terms for them. We just write for proofs of equality
(whose computational content we do not care about).

LECTURE NOTES FEBRUARY 25, 2021



L7.10 Heyting Arithmetic

x : nat

: 0 = 0
refl

inl : 0 = 0 ∨ ∃y:nat. 0 = s y
∨I1

x′ : nat : sx′ = sx′
refl

(x′, ) : ∃y:nat. sx′ = s y
∃I

inr(x′, ) : sx′ = 0 ∨ ∃y:nat. sx′ = s y
∨I2

R(x, inl , x′.r′.inr(x′, )) : x = 0 ∨ ∃y:nat. x = s y
natEx′,r′

fnx⇒ R(x, inl , x′.r′.inr(x′, )) : ∀x:nat. x = 0 ∨ ∃y:nat. x = s y
∀Ix

8 Local Proof Reduction

For harmony, we would like to check that the rules for natural numbers are
locally sound and complete.

Local Soundness. For soundness, we verify that no matter how we in-
troduce the judgment n : nat, we can find a “more direct” proof of the
conclusion. In the case of natI0 this is very easy to see, because the second
premise already establishes our conclusion directly.

0 : nat
natI0

E
C(0) true

x : nat C(x) true
u

F
C(sx) true

C(0) true
natEx,u

=⇒R
E

C(0) true

The case where n = sn′ is more difficult and more subtle. Intuitively,
we should be using the deduction of the second premise for this case.

LECTURE NOTES FEBRUARY 25, 2021



Heyting Arithmetic L7.11

D
n′ : nat

sn′ : nat
natIs E

C(0) true

x : nat C(x) true
u

F
C(sx) true

C(sn′) true
natEx,u

=⇒R

D
n′ : nat

D
n′ : nat

E
C(0) true

x : nat C(x) true
u

F
C(s x) true

C(n′) true
natEx,u

[n′/x]F ′

C(s n′) true

It is difficult to see, however, in which way this is actually a reduction: D
is duplicated, E persists, and we still have an application of natE. The key
to appreciating this as a reduction, regardless, however, is that the term we
are eliminating with the applicaton of natE becomes smaller: from sn′ to
n′. In hindsight we should have expected this, because the term is also the
only component getting smaller in the second introduction rule for natural
numbers. Fortunately, the term that natE is applied to can only get smaller
finitely often, because it will ultimately just be 0, so will be back in the first
local reduction case.

The computational content of this local reduction directly explains in
what way the natural number gets smaller even if the form of the judg-
ment stays the same, because it corresponds directly to the reductions for
primitive recursors R(n,M0, x. u.Ms).

The question of local expansion does not make sense for our truth set-
ting. The difficulty is that we need to show that we can apply the elimi-
nation rules in such a way that we can reconstitute a proof of the original
judgment. However, the elimination rule we have so far works only for the
truth judgment, so we cannot really reintroduce n : nat, since the only two
introduction rules natI0 and natIs do not apply.

LECTURE NOTES FEBRUARY 25, 2021



L7.12 Heyting Arithmetic

9 Local Expansion

Using primitive recursion on typing judgments, we obtain a local expan-
sion.

D
n : nat =⇒E

D
n : nat 0 : nat

natI0
x : nat

sx : nat
natIs

R(n, 0, x. r. sx) : nat
natEx,r

A surprising observation about the local expansion is that it does not
use the recursive result, r, which corresponds to a use of the induction
hypothesis. Consequently, a simple proof-by-cases that uses natE0 when n
is zero and uses natEs when n is a successor would also have been locally
sound and complete already.

This is a reflection of the fact that the local completeness property we
have does not carry over to a comparable global completeness. The dif-
ficulty is the well-known property that in order to prove a proposition A
by induction, we may have to first generalize the induction hypothesis to
some B, prove B by induction and also prove B ⊃ A. Such proofs do not
have the subformula property that proofs only use subformulas of the con-
clusion, which means that our strict verificationist program of explaining
the meaning of propositions from the meaning of their parts breaks down
in arithmetic. In fact, there is an entire hierarchy of arithmetic theories,
depending on which propositions we may use as induction formulas.

References

[Hey56] Arend Heyting. Intuitionism: An Introduction. North-Holland Pub-
lishing, Amsterdam, 1956. 3rd edition, 1971.

[Pea89] Giuseppe Peano. Arithmetices Principia, Nova Methodo Exposita.
Fratres Bocca, 1889.

LECTURE NOTES FEBRUARY 25, 2021


	Introduction
	Induction
	Equality
	Equality is Reflexive
	Primitive Recursion
	Function Types
	Proof Terms
	Local Proof Reduction
	Local Expansion

