
RECITATION 2

1. Proofs Are Programs

As discussed previously in lecture, there is a tight correspondence between the structure of a derivation for
a constructive proof and a term in some particular programming language. This leads to the slogans “proofs
are programs” and “propositions are types”. The (Curry-Howard-Lambek) correspondence can be fleshed out
for the logic we’re studying (intuitionistic propositional logic)1 by the following table

Propositions Types
A ∧B A ∗B
A ∨B A + B
A ⊃ B A→ B
> 1 (unit)
⊥ 0 (void)

Based on this we can produce a version of our rules from the previous recitation that annotate each proposition
step in the derivation with the program that it constructs. Those rules are

M : A N : B

〈M,N〉 : A ∧B

M : A

inl(M) : A ∨B

M : B

inr(M) : A ∨B

M : A ∧B

fst(M) : A

M : A ∧B

snd(M) : B

M : A ∨B

u : A
u

····
N : C

v : B
v

····
R : C

case M of inl(c)⇒ N | inl(c)⇒ R : C
u, v

u : A
u

····
M : B

fn u⇒M : A ⊃ B
u M : A ⊃ B N : A

M(N) :

2. Translation

We now turn to the question of translating proofs to programs and back again. In these notes, we present
both for the sake of accessibility.

(1) (A ⊃ B ⊃ C) ⊃ (B ⊃ A ⊃ C)
Proof:

A ⊃ B ⊃ C true
f

A true
a

B ⊃ C true B true
b

C true
⊃ E

A ⊃ C true
⊃ Ia

B ⊃ A ⊃ C true
⊃ Ib

(A ⊃ B ⊃ C) ⊃ (B ⊃ A ⊃ C) true
⊃ If

Program: fn f => fn b => fn a => (f a) b

Date: January 21, 2020.
1Of course, what makes this correspondence so remarkable is that it extends far beyond this one logic. It is quite robust and

extends to almost any well-behaved logic. It also maps between logic and functional programming and lattices which are just

closed cartesian categories
1



(2) ((A ⊃ B) ∨ (A ⊃ C)) ⊃ A ⊃ (B ∨ C)
Proof:

(A ⊃ B) true ∨ (A ⊃ C) true
fg

A ⊃ B true
f

A true
a

B true
⊃ E

B ∨ C true
∨ I1

A ⊃ C true
g

A true
a

C true
⊃ E

B ∨ C true
∨ I2

B ∨ C true
∨ Ef,g

A ⊃ (B ∨ C) true
⊃ Ia

((A ⊃ B) ∨ (A ⊃ C)) ⊃ A ⊃ (B ∨ C) true
⊃ Ifg

Program: fn x => case snd x of inl b => inl (fst x, b) | inr c => inr (fst x, c)

3. Inventing proof terms

Let’s consider a new connective f. We’ll give the intro and elim rules and try to come up with constructors,
destructors and reduction rules that make sense.

A true

B true
u

····
⊥ true

AfB true

B true
u

····
⊥ true

A true

AfB true

AfB true

A true
u

····

¬B true
v

····
C true

¬A true
u

····

B true
v

····
C true

C true

Let’s come up with constructors that make sense for f

M : A

u : B
u

····
N : ⊥

inl(M,u.N) : AfB

u : A
u

····
M : ⊥

N : B

inr(u.M,N) : AfB

And the destructor...

E : AfB

u : A
u

····

v : ¬B
v

····
M : C

u : ¬A
u

····

v : B
v

····
N : C

caseE of inl(u, v)⇒M | inr(u, v)⇒ N : C

Now we still need to define a reduction rule for f. Reduction rules are applied when the destructor is
applied to a constructor.

case inl(N ′, u′.M ′) of inl(u, v)⇒M | inr(u, v)⇒ N =⇒r [N ′/u, fnu′ ⇒M ′/v]M

case inr(u′.N ′,M ′) of inl(u, v)⇒M | inr(u, v)⇒ N =⇒r [fnu′ ⇒ N ′/u,M ′/v]N
2



4. reductions

Let’s try reducing a term until we can no longer appy reduction rules.

(fn a⇒ fn b⇒ (fn f ⇒ fn p⇒ 〈fst(f)fst(p), snd(f)snd(p)〉)〈fnu⇒ a, fnu⇒ b〉〈b, a〉)

(fn a⇒ fn b⇒ (fn p⇒ 〈fst(〈fnu⇒ a, fnu⇒ b〉)fst(p), snd(〈fnu⇒ a, fnu⇒ b〉)snd(p)〉)〈b, a〉)
Notice at this point we have a few options on how to proceed. It’s actually the case that there is a term

that we will reach no matter which order we apply reduction rules. It’s generally know as the Church Rosser
theorem that if a term finishes reducing in two ways, then they arrive at the same place. With our system
we’ll always reach a “normal” form after a finite number of reductions, so we can apply rules in what ever
order we wish.

(fn a⇒ fn b⇒ (fn p⇒ 〈(fnu⇒ a)fst(p), snd(〈fnu⇒ a, fnu⇒ b〉)snd(p)〉)〈b, a〉)

(fn a⇒ fn b⇒ (fn p⇒ 〈(fnu⇒ a)fst(p), (fnu⇒ b)snd(p)〉)〈b, a〉)

(fn a⇒ fn b⇒ (fn p⇒ 〈a, (fnu⇒ b)snd(p)〉)〈b, a〉)

(fn a⇒ fn b⇒ (fn p⇒ 〈a, b〉)〈b, a〉)
(fn a⇒ fn b⇒ 〈a, b〉)

3


	1. Proofs Are Programs
	2. Translation
	3. Inventing proof terms
	4. reductions

