RECITATION 2

1. Proofs Are Programs

As discussed previously in lecture, there is a tight correspondence between the structure of a derivation for a constructive proof and a term in some particular programming language. This leads to the slogans "proofs are programs" and "propositions are types". The (Curry-Howard-Lambek) correspondence can be fleshed out for the logic we're studying (intuitionistic propositional logic) by the following table

Propositions	Types
$A \wedge B$	A * B
$A \lor B$	A + B
$A\supset B$	$A \rightarrow B$
Т	1 (unit)
	0 (void)
	, ,

Based on this we can produce a version of our rules from the previous recitation that annotate each proposition step in the derivation with the program that it constructs. Those rules are

$$\frac{M:A \quad N:B}{\langle M,N\rangle:A\wedge B} \qquad \frac{M:A}{\mathsf{inl}(M):A\vee B} \qquad \frac{M:B}{\mathsf{inr}(M):A\vee B} \qquad \frac{M:A\wedge B}{\mathsf{fst}(M):A} \qquad \frac{M:A\wedge B}{\mathsf{snd}(M):B}$$

$$\frac{\overline{u:A} \quad u \quad \overline{v:B} \quad v}{\vdots \quad \vdots \quad \vdots \quad \vdots} \qquad \qquad \vdots$$

$$\frac{H:A\vee B}{\mathsf{case} \ M \ \mathsf{of} \ \mathsf{inl}(c)\Rightarrow N \ | \ \mathsf{inl}(c)\Rightarrow R:C} \quad u,v \qquad \frac{\overline{u:A} \quad u}{\mathsf{fn} \ u\Rightarrow M:A\supset B} \quad u \qquad \frac{M:A\supset B \quad N:A}{M(N):}$$

2. Translation

We now turn to the question of translating proofs to programs and back again. In these notes, we present both for the sake of accessibility.

Proof:
$$\frac{\overline{A \supset B \supset C \text{ true}}^f \quad \overline{A \text{ true}}^a}{\overline{B \supset C \text{ true}}} \xrightarrow{B} \frac{B \text{ true}^b}{\overline{B \text{ true}}^b} \supset E$$

$$\frac{C \text{ true}}{\overline{A \supset C \text{ true}}} \supset I^a$$

$$\overline{A \supset C \text{ true}} \longrightarrow I^b$$

Program: fn f \Rightarrow fn b \Rightarrow fn a \Rightarrow (f a) b

(1) $(A \supset B \supset C) \supset (B \supset A \supset C)$

1

Date: January 21, 2020.

¹Of course, what makes this correspondence so remarkable is that it extends far beyond this one logic. It is quite robust and extends to almost any well-behaved logic. It also maps between logic and functional programming and lattices which are just closed cartesian categories

(2)
$$((A \supset B) \lor (A \supset C)) \supset A \supset (B \lor C)$$

Proof:

$$\frac{\overline{(A \supset B) \text{ true}}^f f}{\overline{A \text{ true}}^a} \frac{\overline{A \text{ true}}^f f}{\overline{A \text{ true}}^a} \supset E$$

$$\frac{\overline{B \text{ true}}}{B \lor C \text{ true}} \supset E$$

$$\frac{\overline{B \lor C \text{ true}}}{B \lor C \text{ true}} \supset E$$

$$\frac{\overline{B \lor C \text{ true}}}{B \lor C \text{ true}} \supset E$$

$$\frac{\overline{B \lor C \text{ true}}}{B \lor C \text{ true}} \supset E$$

$$\frac{\overline{A \supset (B \lor C) \text{ true}}}{B \lor C \text{ true}} \supset I^a$$

$$\frac{\overline{A \supset (B \lor C) \text{ true}}}{((A \supset B) \lor (A \supset C)) \supset A \supset (B \lor C) \text{ true}} \supset I^{fg}$$

Program: fn x => case snd x of inl b => inl (fst x, b) | inr c => inr (fst x, c)

3. Inventing proof terms

Let's consider a new connective λ . We'll give the intro and elim rules and try to come up with constructors, destructors and reduction rules that make sense.

Let's come up with constructors that make sense for λ

And the destructor...

$$\underbrace{ \begin{aligned} & \overline{u:A} \ ^{u} \quad \overline{v:\neg B} \ ^{v} \quad \overline{u:\neg A} \ ^{u} \quad \overline{v:B} \ ^{v} \\ & \vdots \qquad \vdots \qquad \vdots \\ & \underline{M:C} \qquad \qquad \underbrace{ \begin{aligned} & \vdots & \ddots & \vdots \\ & N:C \end{aligned}} \end{aligned}}_{\text{Case E of inl}(u,v) \Rightarrow M \mid \text{inr}(u,v) \Rightarrow N:C \end{aligned}}$$

Now we still need to define a reduction rule for λ . Reduction rules are applied when the destructor is applied to a constructor.

$$\mathsf{case}\,\mathsf{inl}(N',u'.M')\,\mathsf{of}\,\mathsf{inl}(u,v)\Rightarrow M\,|\,\mathsf{inr}(u,v)\Rightarrow N\Longrightarrow^r[N'/u,\mathsf{fn}\,u'\Rightarrow M'/v]M$$

$$\mathsf{case}\,\mathsf{inr}(u'.N',M')\,\mathsf{of}\,\mathsf{inl}(u,v)\Rightarrow M\,|\,\mathsf{inr}(u,v)\Rightarrow N\Longrightarrow^r[\mathsf{fn}\,u'\Rightarrow N'/u,M'/v]N$$

4. REDUCTIONS

Let's try reducing a term until we can no longer appy reduction rules.

$$(\operatorname{fn} a \Rightarrow \operatorname{fn} b \Rightarrow (\operatorname{fn} f \Rightarrow \operatorname{fn} p \Rightarrow \langle \operatorname{fst}(f) \operatorname{fst}(p), \operatorname{snd}(f) \operatorname{snd}(p) \rangle) \langle \operatorname{fn} u \Rightarrow a, \operatorname{fn} u \Rightarrow b \rangle \langle b, a \rangle)$$

$$(\operatorname{fn} a \Rightarrow \operatorname{fn} b \Rightarrow (\operatorname{fn} p \Rightarrow \langle \operatorname{fst}(\langle \operatorname{fn} u \Rightarrow a, \operatorname{fn} u \Rightarrow b \rangle) \operatorname{fst}(p), \operatorname{snd}(\langle \operatorname{fn} u \Rightarrow a, \operatorname{fn} u \Rightarrow b \rangle) \operatorname{snd}(p) \rangle) \langle b, a \rangle)$$

Notice at this point we have a few options on how to proceed. It's actually the case that there is a term that we will reach no matter which order we apply reduction rules. It's generally know as the Church Rosser theorem that if a term finishes reducing in two ways, then they arrive at the same place. With our system we'll always reach a "normal" form after a finite number of reductions, so we can apply rules in what ever order we wish.

$$\begin{split} (\operatorname{fn} a &\Rightarrow \operatorname{fn} b \Rightarrow (\operatorname{fn} p \Rightarrow \langle (\operatorname{fn} u \Rightarrow a) \operatorname{fst}(p), \operatorname{snd}(\langle \operatorname{fn} u \Rightarrow a, \operatorname{fn} u \Rightarrow b \rangle) \operatorname{snd}(p) \rangle) \langle b, a \rangle) \\ & (\operatorname{fn} a \Rightarrow \operatorname{fn} b \Rightarrow (\operatorname{fn} p \Rightarrow \langle (\operatorname{fn} u \Rightarrow a) \operatorname{fst}(p), (\operatorname{fn} u \Rightarrow b) \operatorname{snd}(p) \rangle) \langle b, a \rangle) \\ & (\operatorname{fn} a \Rightarrow \operatorname{fn} b \Rightarrow (\operatorname{fn} p \Rightarrow \langle a, (\operatorname{fn} u \Rightarrow b) \operatorname{snd}(p) \rangle) \langle b, a \rangle) \\ & (\operatorname{fn} a \Rightarrow \operatorname{fn} b \Rightarrow (\operatorname{fn} p \Rightarrow \langle a, b \rangle) \langle b, a \rangle) \\ & (\operatorname{fn} a \Rightarrow \operatorname{fn} b \Rightarrow \langle a, b \rangle) \end{split}$$