RECITATION 2

1. PrRoors ARE PROGRAMS

As discussed previously in lecture, there is a tight correspondence between the structure of a derivation for
a constructive proof and a term in some particular programming language. This leads to the slogans “proofs
are programs” and “propositions are types”. The (Curry-Howard-Lambek) correspondence can be fleshed out
for the logic we're studying (intuitionistic propositional logic)ﬂ by the following table

Propositions Types
ANB AxB
AV B A+ B
ADB A—B

T 1 (unit)
L 0 (void)

Based on this we can produce a version of our rules from the previous recitation that annotate each proposition
step in the derivation with the program that it constructs. Those rules are

M:A N:B M:A M:B M:ANB M:AANB
(M,N): ANB in(M): Av B inf(M): AV B fst(M) : A snd(M) : B
u:Au ’U:BU u:Au
M:AVB g : g
N:C R:C M:B

M:ADB N:A
M(N):

U, v U
case M of inl(c) = N |inl(c) = R: C fnru=M:ADB

2. TRANSLATION

We now turn to the question of translating proofs to programs and back again. In these notes, we present
both for the sake of accessibility.
(1) (ADBD>C)D(BDADC(O)
Proof:

ADBDCtruef Atruea
B D C true B trueb
C true
A D C true
B> ADC true
(ADBD>C)D(BD>ADC) true
Program: fn f => fn b =>fna=> (f a) b

oI
b

»yi
oI

Date: January 21, 2020.

LOf course, what makes this correspondence so remarkable is that it extends far beyond this one logic. It is quite robust and

extends to almost any well-behaved logic. It also maps between logic and functional programming and lattices which are just
closed cartesian categories

1

(2) (ADB)V(ADC)DAD(BVCO)
Proof:

(AD B) truev (ADC) truefg

ADB truef A true ADC true” A true
O F O F
B true C true

Vv I V I
BV C true BV C true

BV C true

AD (BVC) true

((ADB)V(ADC)) D AD(BVC(C) true

Program: fn x => case snd x of inl b => inl (fst x, b) | inr ¢ => inr (fst x, c)

v Efe
oI

o 179

3. INVENTING PROOF TERMS

Let’s consider a new connective A. We'll give the intro and elim rules and try to come up with constructors,
destructors and reduction rules that make sense.

u
B true
A true -
1 true
A A B true
u u v u v
B true A true - B true -A true B true
- A true A A B true i : i
1 true C true C true
A A B true C true

Let’s come up with constructors that make sense for A

u u
u:B U
M: A : : N:B
N: L M: L
inl(M,u.N): AAB inrf(u.M,N): AXB
And the destructor...
u Au v ﬁBU u:ﬁAu v BU
E:AAB g :
M:C N:C

case Eof inl(u,v) = M |inr(u,v) = N : C
Now we still need to define a reduction rule for A. Reduction rules are applied when the destructor is
applied to a constructor.

caseinl(N',u'.M") of inl(u,v) = M |inr(u,v) = N =" [N'/u,fnu’ = M'/v]M

caseinr(u'.N', M) of inl(u,v) = M |inr(u,v) = N =" [fnu' = N'/u, M’ Jv]N
2

4. REDUCTIONS

Let’s try reducing a term until we can no longer appy reduction rules.
(fna = fnb= (fn f = fnp = (fst(f)fst(p),snd(f)snd(p))){fnu = a,fnu = b)(b, a))

(fna = fnb= (fnp = (fst({fnu = a,fnu = b))fst(p),snd({(fnu = a,fnu = b))snd(p)))(b, a))

Notice at this point we have a few options on how to proceed. It’s actually the case that there is a term
that we will reach no matter which order we apply reduction rules. It’s generally know as the Church Rosser
theorem that if a term finishes reducing in two ways, then they arrive at the same place. With our system
we’ll always reach a “normal” form after a finite number of reductions, so we can apply rules in what ever
order we wish.

(fna = fnb= (fnp = ((fnu = a)fst(p),snd({fnu = a,fnu = b))snd(p)))(b, a))
(fna=fnb= (fnp = ((fnu = a)fst(p), (fnu = b)snd(p)))(b, a))
(fna = fnb= (fnp = (a, (fnu = b)snd(p)))(b, a))

(fna = fnb= (fnp = (a,b))(b,a))
(fna = fnb= (a,b))

	1. Proofs Are Programs
	2. Translation
	3. Inventing proof terms
	4. reductions

