
Constructive Logic (15-317), Spring 2020
Assignment 9:

Instructor: André Platzer
TAs: Avery Cowan, Cameron Wong, Carter Williams, Klaas Pruiksma

Due: Tuesday, April 14, 2020, 11:59 pm

This homework is out of 20 points.

1 Binary

Consider the following grammar of ground terms representing binary numbers:

n ::= ε | b0(n) | b1(n)

In class, we learned to write forward logic programs using inference rules; a forward logic pro-
gramming engine will apply these inference rules until saturation is reached, and then the result of our
program can be read from the saturated proof state. In the tasks that follow, you are free to introduce any
auxiliary predicates that you require. You need to ensure that your rules saturate when new facts of the
indicated form are added to the database.

In the problems that follow, you are required to implement forward logic programs by writing down
systems of inference rules. You may find it useful to experiment with DLV, an implementation of forward
logic programming which can be downloaded here: http://www.dlvsystem.com/dlv/. DLV can be
used to test your ideas on specific cases and quickly determine if they are likely to work; but it is not
required.

Task 1 (5 pts). Implement a forward logic program std(n) which derives the atom no iff it is not the case
that n is in standard form. You may assume that n is ground (i.e. not subject to unification).

Task 2 (5 pts). Next, implement a forward logic program succ(m,n) which derives no when it is not the
case that m+ 1 = n. For the purpose of this exercise, you may assume that m and n are ground. You may
also assume that m and n are in standard form.

2 NFAs

2.1 Background

An important construct in the study of Chomsky’s hierarchy of languages is the Deterministic Finite
Automata (DFA), which defines the so-called regular languages. A DFA over a fixed alphabet Σ can be
defined informally1 via the following constructs:

• Q, a set of states.

• q0, an initial state.
1“informal” in this context referring to the lack of inference rules for sets, functions, bools, etc.

1

http://www.dlvsystem.com/dlv/

• δ : Q× Σ→ Q, a transition function taking a state and a character and returning a new state.

• F : Q→ bool, a function returning true on accepting (or final) states.

A given DFA Q, q0, δ, F , then, accepts a string S = s1s2 . . . sn exactly when F (δ(δ(. . . δ(q0, s1), . . .), sn))
returns true.

Note that, if viewed as a state machine, a DFA is “in” a unique state at any given time. This is enforced
by the transition function δ being a function from Q × Σ to Q. If we relax this condition, allowing the
transition function to potentially return multiple values, we get a nondeterministic finite automata (NFA).
An NFA, then, accepts if there is any path leading to an accepting state (more on this later).

2.2 Saturation

The nondeterminism inherent to NFAs make it a good fit for exploring the behavior of a forward logic
program, in which we also act “nondeterministically” if multiple rules can be applied at once.

Consider the following grammar:

Characters C ::= a | b | c
Strings S ::= ε | CS
States Q ::= q0 | q1 | q2 | q3 | q4 | q5

For this problem, we will encode δ and F into the rules and grammar, rather than treating them as
first-class constructions themselves, as it is simpler and requires less setup.

Task 3 (5 pts). Given the following forward logic program, give all predicates of the form accept(S)
present in the “saturated” database obtained from running the program under the following constraint:

• Predicates of the form acceptFrom(Q,S) are logged only when S has length at most 5.

Your answer should be ordered according to depth-first chaining. Rules are applied in order of lowest
rule number first where applicable.

acceptFrom(q0, S)

accept(S)
NFA0

final(Q)

acceptFrom(Q, ε)
NFA1

acceptFrom(q1, S)

acceptFrom(q0, aS)
NFA2

acceptFrom(q2, S)

acceptFrom(q1, bS)
NFA3

acceptFrom(q0, S)

acceptFrom(q2, S)
NFA4

acceptFrom(q3, S)

acceptFrom(q2, S)
NFA5

acceptFrom(q4, S)

acceptFrom(q3, aS)
NFA6

acceptFrom(q5, S)

acceptFrom(q4, cS)
NFA7

acceptFrom(q3, S)

acceptFrom(q5, S)
NFA8

final(q3)
NFA9

final(q0)
NFA10

Hints:

• This NFA recognizes the language (ab)+(ac)∗.

• In this case, there is no “seed” fact. What does that mean for the behavior of this program?

Task 4 (5 pts). In the first two tasks, we asked you to implement a forward logic program deriving no

when the predicate is false. In the previous problem, however, the rules more closely resemble those that
might be used in a more traditional backwards-chaining program. Explain the problem with using the
previous rules as a forward-logic program that determines whether the NFA accepts an input string S.

2

	Binary
	NFAs
	Background
	Saturation

