
Constructive Logic (15-317), Fall 2019
Assignment 6: Propositional Theorem Proving

Instructor: Andr Platzer
TAs: Avery Cowan, Carter Williams, Cam Wong, Klaas Pruiksma

Due: Thurs, Mar 5, 2020, 11:59 pm

This assignment must be submitted electronically via Gradescope andAutolab. Submit your home-
work as a pdf containing your written solutions. Submit your code as two .tar files: one containing each
.kyx file and one containing each .sig and .sml file.

The following commands will create the correct tar files. The precise names of the tar files are not
important, but the names of the files in each tar are. The autograder has some flexibility, but if it cannot
find your problem files, it cannot grade them.

tar cvf handin_sml.tar inversion_calculus.sml inversion_calculus.sig

tar cvf handin_key.tar inotnotcontra2_Proof.kyx icovariance_Proof.kyx \

iScombinator_Proof.kyx iImplicortion_Proof.kyx \

iLazyApp_Proof.kyx iCPS_Proof.kyx iCNot_Proof.kyx

More succinctly (but potentially more error-prone if you have other things in the directory):
tar cvf handin_key.tar *_Proof.kyx

1 KeYmaera I

Prove the following statements in KeYmaera I:

Task 1 (2 points). inotnotcontra2.kyx

Definitions

Bool p;

End.

Problem

((p | (p->false))->false)->false

End.

Task 2 (2 points). icovariance.kyx

Definitions

Bool a;

Bool b;

Bool x;

Bool y;
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Bool z;

End.

Problem

(a -> b) -> (x -> y | a & z) -> (x -> y | b & z)

End.

Task 3 (2 points). iScombinator.kyx

Definitions

Bool p;

Bool q;

End.

Problem

(p -> q) -> (p -> (q -> false)) -> (p -> false)

End.

Task 4 (2 points). iImplicortion.kyx

Definitions

Bool p;

Bool q;

Bool r;

End.

Problem

(p -> q) -> (p | r -> q | r)

End.

Task 5 (2 points). iLazyApp.kyx

Definitions

Bool p;

End.

Problem

p -> ((p -> false) -> false)

End.

Task 6 (2 points). iCPS.kyx

Definitions

Bool a;

Bool b;

End.

Problem

(a -> b) -> a -> ((b -> false) -> false)

End.
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Task 7 (2 points). iCNot.kyx

Definitions

Bool a;

Bool b;

Bool c;

Bool d;

End.

Problem

((((a -> false) -> false) -> false) ->

(((b -> false) -> false) -> ((c -> false) -> d)) ->

(a -> false) -> ((((b -> false) -> false) -> false) -> false) ->

(((c -> false) -> false) -> false) -> ((d -> false) -> false)

)

End.

2 Completeness Is Back

When we were working with natural deduction, we proved for each connective that given a derivation
of that connective we can extend the derivation and reconstruct the connective. In sequent calculus we
want to be able to show that, for any connective, it is legal to use an assumption of that connective as
a verification of it even if that connective is not atomic. Put formally we want to show that the rule

Γ, A =⇒ A
id

is admissible.

Task 8 (1 points). Describe what inductive structure(s) we ought to induct on to show that the above rule
is admissible.

Task 9 (5 points). Write the proof for the admissibility of this rule in the special case where A is of the
form A1 ∨A2.

3 Soundness too

In lecture and the lecture notes, we stated that we can prove the admissibility of cut via nested induction
on the structure of the proof, and showed the cases for implication and conjunction, but left some cases
unproven. Now, it is your turn to prove the admissibility of cut in a specific clause, or more precisely:

Task 10 (6 points). Extend the proof of the admissibility of cut from class by filling in the following
inductive case.

Case: D ends in ∨R2 and E ends in ∨L, where ∨L is applied on the principal formula of the cut.

4 Not Doing The Impossible

Aside from making proof search more reasonable, another great benefit of sequent calculus is that we can
more easily prove that a proposition cannot be proven in a particular sequent calculus. In the following
proof, you may appeal to the soundness of sequent calculus with respect to classical logic.

Task 11 (5 points). Show that =⇒ ¬(A ∧B) ⊃ ¬A ∨ ¬B cannot be proven in sequent calculus.
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5 A Theorem Prover

You might have noticed, after some practice, that proving a theorem in a calculus becomes quite a
mechanical task. Wouldn’t it be great if we could have the computer do that for us? That is exactly
our goal for the rest of this homework: to implement an automatic theorem prover for propositional
intuitionistic logic.

The first thing to think about is which calculus we will use. It should be clear by now that natural
deduction is not the best choice, as it is too non-deterministic. The verification calculus could be a bit
better, as it avoids the redundant steps that eliminate and introduce the same connective over and over
again, but it still has the problem of keeping track of the right assumptions at the right places. In this case
we need to be very smart about which direction to work at each step, since we can either go upwards or
downwards. Instead of trying to come up with heuristics for that, why don’t we use the sequent calculus
itself, where proof construction always happens from the bottom up?

Indeed, sequent calculi are much better behaved for proof search. But we need to be careful about it.
Think about the first sequent calculus we have seen. In this first version, the formulas on the left side of
the sequent were persistent. This means we can always choose to decompose those formulas. In fact, any
sequent calculus that has what we call implicit contraction1 of some formulas runs into the same problem.
The inversion calculus avoids these problems. This calculus refines the restricted sequent calculus into
two mutually dependent forms of sequents.

∆ ; Ω
R−→ C Decompose C on the right

∆ ; Ω
L−→ C Decompose Ω on the left

Above, Ω is an ordered context (say, a stack) that we only access at the right end. ∆ is a context restricted
to those formulas whose left rules are not invertible, and C in the second sequent is a formula whose
right rule is not invertible. Both types of sequents can also contain atoms. For reference, the rules are
below. For further information, please see the notes for Lecture 12.

1Usually in the form of applying a rule to decompose a formula and keeping a copy of the original formula in the context.
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Right Invertible Rules

∆ ; Ω
R−→ A ∆ ; Ω

R−→ B

∆ ; Ω
R−→ A ∧B

∧R
∆ ; Ω

R−→ >
>R

Switching Modes

∆ ; Ω
L−→ P

∆ ; Ω
R−→ P

LRP (P atomic)
∆ ; Ω

L−→ A ∨B

∆ ; Ω
R−→ A ∨B

LR∨
∆ ; Ω

L−→ ⊥

∆ ; Ω
R−→ ⊥

LR⊥

Left Invertible Rules

∆, P ; · L−→ P

init (P atomic)

∆ ; Ω ·A ·B L−→ C

∆ ; Ω · (A ∧B)
L−→ C

∧L
∆ ; Ω

L−→ C

∆ ; Ω · > L−→ C
>L

∆ ; Ω · ⊥ L−→ C
⊥L

∆ ; Ω ·A L−→ C ∆ ; Ω ·B L−→ C

∆ ; Ω · (A ∨B)
L−→ C

∨L

Shift Rules

∆, P ; Ω
L−→ C

∆ ; Ω · P L−→ C

shiftP (P atomic)

Search Rules

∆ ; · R−→ A

∆ ; · L−→ A ∨B

∨R1

∆ ; · R−→ B

∆ ; · L−→ A ∨B

∨R2

Proof search using inversion (no implication)

In class, we saw a version of the inversion calculus for intuitionistic propositional logic (with truth,
falsehood, disjunction, conjunction and implication); all the rules of the inversion calculus have the
property that the “weight” of the sequents decrease when the rules are read bottom-up, except the left
rule for implication. If it weren’t for this rule, we could therefore use the inversion calculus directly to
implement a terminating decision procedure for intuitionistic propositional logic.

There are two standard solutions to this problem in the literature: the hacker’s solution is to implement
loop detection in order to ensure that the proof search process always bottoms out; a more elegant solution
is provided by Dyckhoff’s contraction-free sequent calculus, called g4ip, which decomposes the ⊃L rule
into several different rules.

In this assignment, we will avoid this issue by implementing a proof search engine for the implication-

5



free fragment of the inversion calculus, where we omit the implication connective. In the next homework,
you will extend this theorem prover to support implication using the g4ip calculus.

Tip The rules themselves are non-deterministic, so one must invest some effort in extracting a deter-
ministic implementation from them.

Task 12. Implement a proof search procedure based on the inversion calculus without implication.
Efficiency should not be a primary concern, but see the hints below regarding invertible rules. Strive
instead for correctness and elegance, in that order.

You should write your implementation in Standard ML.2 Some starter code is provided in the file
prop.sml, included in this homework’s handout, to clarify the setup of the problem and give you some
basic tools for debugging.

signature PROP =

sig

datatype prop = (* A ::= *)

Atom of string (* P *)

| True (* | T *)

| And of prop * prop (* | A1 & A2 *)

| False (* | F *)

| Or of prop * prop (* | A1 | A2 *)

val toString : prop -> string

val eq : prop * prop -> bool

end

structure Prop :> PROP

Your task is implement a structure InversionCalculus matching the signature INVERSION_CALCULUS.
The signature has been provided below, and is included in the handout materials.

signature INVERSION_CALCULUS =

sig

(* decide D A = true iff . ; D --R--> A has a proof,

decide D A = false iff . ; D --R--> A has no proof

*)

val decide : Prop.prop list -> Prop.prop -> bool

end

A simple test harness assuming this structure is given in the structure Test in the file test.sml, also
included in the handout. Feel free to post any additional interesting test cases you encounter to Piazza.

Here are some hints to help guide your implementation:

• Be sure to apply all invertible rules before you apply any non-invertible rules. Recall that the
non-invertible rules in inversion calculus are∨R1, ∨R2.

• When it comes time to perform non-invertible search, you’ll have to consider all possible choices
you might make.

2If you are not comfortable writing in Standard ML, you should contact the instructors and the TAs for help.
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• The provided test cases can help you catch many easy-to-make errors. Test your code early and
often! If you come up with any interesting test cases of your own that help you catch other errors,
we encourage you to share them on Piazza.

There are many subtleties and design decisions involved in this task, so don’t leave it until the last minute!
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