Final Exam

15-317/657 Constructive Logic André Platzer

May 8, 2020

Name: _____

Andrew ID: _____

Instructions

- For fairness reasons all answers must be typed on a computer in text editors/text-processing (e.g. LaTeX) and submitted as PDF. Besides PDF viewers, no other software is allowed and no handwritten answers/scans are accepted. You can use scratch paper but not hand it in.
- Only the following resources can be used during this exam:
 - 1. 15317 lecture and recitation notes
 - 2. editors or text-processing software
 - 3. private Piazza posts or email with course staff

All other communications with anyone about the exam or this course during the exam period constitute an academic integrity violation.

- You have 24 hours from when the exam was available to complete it.
- There are 4 problems on 5 pages.
- **Submit** on GradeScope \rightarrow Final \rightarrow Submit assignment

	Max	Score
Proof Terms	90	
Propositional Theorem Proving	80	
Prolog Principles	50	
Linear Logic Cuts	80	
Total:	300	

15-317/657	Final, page 2/5	Andrew ID:		
1 Proof Terms (90 points) This question studies proof terms of natural deduction. Recall that a proof term is called <i>abnormal</i> if it can be reduced by some local reduction of proof terms. Otherwise <i>normal</i> /irreducible.				
10 Task 1 Give a normal proof term for that is impossible.	$\mathfrak{c}\left((A\supset C)\wedge(B\supset C)\right)\supset\left((A)$	$A \lor B) \supset (C \lor C)$ or explain why		
10 Task 2 Give an abnormal proof term	for $(A \supset (B \land C)) \supset (A \supset C)$	or explain why that is impossible.		
10 Task 3 Give a normal proof term just	stifying $A \supset ((A \lor B) \supset A)$	or explain why that is impossible.		
10 Task 4 Give an abnormal proof term	justifying $A \supset ((A \lor B) \supset A)$	or explain why that is impossible.		
10 Task 5 Give an abnormal proof term	n justifying $(A \lor B) \supset A$ or	explain why that is impossible.		
20 Task 6 Briefly explain whether ther				

Task 7 Briefly **explain** whether there is a true proposition A of intuitionistic propositional logic for which there is no **abnormal** proof term M such that M : A proves.

for which there is no proof term M such that M : A proves.

15-317/657

20

Final, page 3/5

Andrew ID:

2 Propositional Theorem Proving (80 points)

The contraction-free sequent calculus \rightarrow is *sound* and *complete* w.r.t. \implies and *terminates*: all its premises are strictly smaller in a well-founded ordering. Each of the following tasks drops one rule from our original contraction-free sequent calculus and replaces it with another. **Explain** whether these properties still hold when replacing *only* the indicated rule and **mark** (s) for sound wrt. \implies , (u) for unsound, (c) for complete wrt. \implies , (i) for incomplete, (t) for terminating, (n) for nonterminating. If they fail, show an example demonstrating the failure. To get you started here's a simple example: Replacing rule $\land R$ by rule *P*0 would make it

$$\frac{\Gamma \longrightarrow A \quad \Gamma \longrightarrow B}{\Gamma \longrightarrow A \wedge B} \wedge R \qquad \frac{\Gamma \longrightarrow A}{\Gamma \longrightarrow A \wedge B} P0$$

(u) because $\longrightarrow \top \land \bot$ proves by $P0 + \top R$ but is (constructively) false as it implies \bot by $\land L$. (c) every sequent provable by $\land R$ is provable by P0, which has a subset of the premises of $\land R$. (t) the same ordering shows termination because P0 produces a subset of the premises of $\land R$.

Task 1 Explain what happens when we only replace rule $\lor \supset L$ by rule *P*1:

 $\frac{\Gamma, A_1 \supset B, A_2 \supset B \longrightarrow C}{\Gamma, (A_1 \lor A_2) \supset B \longrightarrow C} \lor \supset L \qquad \frac{\Gamma, A_1 \supset B \longrightarrow C}{\Gamma, (A_1 \lor A_2) \supset B \longrightarrow C} P1$

20 **Task 2** Explain what happens when we only replace rule $\forall R_2$ by rule *P*2:

$$\frac{\Gamma \longrightarrow B}{\Gamma \longrightarrow A \lor B} \lor R_2 \qquad \frac{\Gamma \longrightarrow B \lor A}{\Gamma \longrightarrow A \lor B} P2$$

20 **Task 3** Explain what happens when we only replace rule $\bot \supset L$ by rule *P*3:

$$\frac{\Gamma \longrightarrow C}{\Gamma, \bot \supset B \longrightarrow C} \ \bot \supset L \qquad \frac{\Gamma, \top \supset B \longrightarrow C}{\Gamma, \bot \supset B \longrightarrow C} \ P3$$

20 Task 4 Explain what happens when we only replace rule $P \supset L$ by rule P4: $P \in \Gamma \quad \Gamma, B \longrightarrow C \qquad \Gamma \longrightarrow P \quad \Gamma, B \longrightarrow C$

$$\frac{C}{\Gamma, P \supset B \longrightarrow C} P \supset L \qquad \frac{\Gamma \longrightarrow \Gamma \xrightarrow{} \Gamma, B \longrightarrow C}{\Gamma, P \supset B \longrightarrow C} P4$$

15-317/657

Final, page 4/5

3 Prolog Principles (50 points)

This question studies symbolic computation in Prolog with polynomials in one variable (written x). Polynomials are represented as a list of integer coefficients, e.g.:

[5,6,7,8] represents the polynomial 5 + 6*x + 7*x² + 8*x³

In this question you will define predicates padd/3, pscale/3, pmul/3 to compute the representation of polynomials representing polynomial addition, scaling, and multiplication, respectively. For example, the following queries are expected to succeed:

satisfying pol/1 that will be computed by the predicate when all inputs are provided, where:

padd([1,2,3],[5,6],[6,8,3]),pscale(3,[1,2],[3,6]),pmul([1,2,3],[5,7],[5,17,29,21]). Modes describe the intended ways of using a predicate. Mode +pol indicates an input argument that needs to be provided satisfying pol/1. Mode -pol indicates an output argument

```
pol([A|As]) :- integer(A), pol(As).
pol([]).
```

10 **Task 1** Write a Prolog program padd(+pol,+pol,-pol) that takes two pol representations as inputs in the first and second arguments and produces a pol representation of their sum as the output in the third argument.

10 **Task 2** Write a Prolog program pscale(+integer,+pol,-pol) that takes an integer as input in the first argument, a pol representation as input in the second argument and produces a pol representation of the second argument multiplied/scaled by the first argument as the output in the third argument.

30 **Task 3** Write a Prolog program pmul(+pol,+pol,-pol) that takes two pol representations as inputs in the first and second arguments and produces a pol representation of the product of the input polynomials as the output in the third argument.

20

Final, page 5/5

4 Linear Logic Cuts (80 points)

This question studies cuts in linear logic. We simply write Δ , $A \Vdash C$ for Δ , $A \operatorname{res} \Vdash C$ true. Recall that the *linear* cut theorem for linear logic constructs a deduction \mathcal{F} from deductions \mathcal{D} and \mathcal{E} and (just like the ordinary cut theorem for intuitionistic logic) is also proved by induction on the structure of the formula A as well as the deductions \mathcal{D} and \mathcal{E} .

Theorem 1 (Linear cut) If $\Delta \Vdash A$ and $\Delta', A \Vdash C$ then $\Delta, \Delta' \Vdash C$.

Task 1 Provide and briefly explain a counterexample justifying from its resource semantics why the *ordinary* structural cut theorem of intuitionistic logic does *not* hold for linear logic: If $\Delta \Vdash A$ and $\Delta, A \nvDash C$ then $\Delta \nvDash C$

20 **Task 2** Commodore Horgiatiki performed one case of linear cut elimination. But he is missing some parts and is unsure whether he got a correct proof. Fill in **all** missing arguments and justifications and steps so that you obtain a complete proof. If there are any errors or missing justifications in Horgiatiki's proof, clearly mark and explain in one line. Unnecessary steps are not necessarily incorrect but still need a justification of their (in)correctness.

$$\mathcal{D} = \frac{\begin{array}{cccc} \mathcal{D}_1 & \mathcal{D}_2 & \mathcal{E}_1 \\ \mathcal{D} = \frac{\Delta \Vdash A_1 & \Delta \Vdash A_2}{\Delta \Vdash A_1 \& A_2} \& R \quad \text{and} \quad \mathcal{E} = \frac{\Delta', A_1 \Vdash C}{\Delta', A_1 \& A_2 \Vdash C} \& L_1 \\ \begin{array}{ccccc} \Delta \vdash A_1 & 1 & \text{By} \\ \Delta \vdash A_2 & 2 & \text{By} \\ \hline \Delta', A_1 \Vdash C & 3 & \text{By} \\ \Delta', A_2 \vdash C & 4 & \text{By} \\ \hline \Delta, \Delta' \vdash C & 5 & \text{By} \end{array}$$

20 **Task 3** Prove the case of the *linear* cut theorem where \mathcal{D} ends with $\neg R$ and \mathcal{E} ends with $\neg L$:

$$\mathcal{D} = \frac{\mathcal{D}_1}{\Delta, A_1 \Vdash A_2} \xrightarrow{\neg \circ R} \text{ and } \mathcal{E} = \frac{\mathcal{D}_1}{\Delta_1' \vdash A_1} \xrightarrow{\mathcal{D}_2}{\Delta_2', A_2 \vdash C} \xrightarrow{\neg \circ L}$$

Task 4 When replacing \multimap by \supset and \Vdash by \Longrightarrow does a proof of Task 3 justify the case of cut formula $A_1 \supset A_2$ as principal formula of the ordinary cut theorem for intuitionistic logic? Explain.