Constructive Logic (15-317), Fall 2016
Recitation 12: Forward Logic Programming

Evan Cavallo (ecavallo@cs), Oliver Daids (ojd@andrew), Giselle Reis (greis@andrew)

Functional Evaluation with Forward Chaining

Consider the language of the untyped lambda calculus.
eu=x|Ax.e|een
We can write a set of rules using three predicates

eval(e) evaluatee
e* ¢ ereduces to e’
e —> v eevaluatestov

so that we can evaluate e with forward chaining, by seeding the system with eval(e) and waiting
for a fact of the form e < v to appear.

Task 1. Define such a set of rules.

Solution 1: See http://www.cs.cmu.edu/~fp/courses/lp/lectures/20-bottomup.pdf.

Implementing Forward Chaining in Prolog

Task 2. Define a predicate forward/2 so that forward(I,0) takes an input list of facts I and returns
an output list 0 of facts obtained by exhaustively applying inference rules to I until quiescence.
Assume the existence of a predicate fclause/2 which enumerates the set of rules by axioms
fclause(G, S) where G is the conclusion and S is the list of predicates.

Solution 2:

forward(I,0) :- fclause(G,S), sublist(S,I), \+(member(G,I)), !, forward([G|I], 0).
forward(I,I).

Task 3. Define fclause/2 so that forward computes the symmetric transitive closure of an input
graph.
Solution 3:

fclause(edge(N,M), [edge(M,N)]).
fclause(edge(M,P), [edge(M,N),edge(N,P)]).

http://www.cs.cmu.edu/~fp/courses/lp/lectures/20-bottomup.pdf

Task 4. How can we use this (or something like it) to compute Fibonacci numbers like in yesterday’s
lecture? There are several possible answers.

Solution 4: Some design choices:

e How to ensure that the input eventually quiesces? One way is to include a timeout parameter
in the fibonacci predicate; another is to add a timeout parameter to forward.

e How to compute addition? This could be implemented by another forward chaining pred-
icate. It could also be implemented by allowing clauses to have side conditions (adding an
extra argument to fclause), and checking those side conditions in forward. For example,
using hardware integers:

forward(I,0) :- fclause(G,S,C), sublist(S,I), \+(member(G,I)), check(C), !,
forward([G|I], O).
forward(I,I).

check(sum(M,N,P)) :- P is M + N.

