
Constructive Logic (15-317), Fall 2016
Assignment 6: Logic Programming and

Quantifiers

Contact: Evan Cavallo (ecavallo@cs.cmu.edu)

Due Tuesday, October 25, 2016

This assignment is due at the beginning of class on the above date and
must be submitted electronically via autolab. Submit your homework as
a tar archive containing a .kyt file for each KeYmaeraI task and a hw6.pl
file with your solutions to the Prolog tasks. There is no written portion
of this assigment, so you do not have to submit a pdf file.

After submitting via autolab, please check the submission’s con-
tents to ensure it contains what you expect. No points can be given to
a submission that isn’t there.

1 Quantifiers

In this section, you will use KeYmaeraI to prove theorems with quantifiers
in the sequent calculus. For each specification foo.kyx, submit your
solution tactic as foo.kyt.

Task 1 (4 points). uniform.kyx:

(∃y∀xP(x, y)) ⊃ (∀x∃yP(x, y))

Task 2 (4 points). per.kyx:

(∀x∀yP(x, y) ⊃ P(y, x))
⊃ (∀x∀y∀z(P(x, y)∧P(y, z) ⊃ P(x, z)))
⊃ (∀u∀v(P(u, v) ⊃ P(u,u)∧P(v, v)))

1



Task 3 (4 points). russell.kyx

(∃s∀x(E(x, s)⇔ ¬E(x, x))) ⊃ ⊥

(If you read the terms as sets and the predicate E(x, y) as x ∈ y, this is the
statement that there is no “Russell set” {x | x < x}.)

Task 4 (4 points). yoneda.kyx

∀x∀y((P(x) ⊃ P(y))⇔ ∀z((P(y) ⊃ P(z)) ⊃ (P(x) ⊃ P(z))))

2 Prolog Programming

For this part of the assignment, you will write and test some simple Prolog
predicates, adhering to the following standards:

• Don’t use cut, conditional, or any other control operator.

• Don’t use negation-as-failure or disequality.

• You may use any of the list processing predicates or arithmetic
predicates provided by gprolog, exceptmaplistor any of the sorting
predicates.

• Backtracking must not result in nontermination or in wrong an-
swers. That is, when the user types ; in response to a query result,
execution must terminate with a correct answer or no.

• Backtracking may produce redundant correct answers.

• When your code is loaded and compiled, no warnings should be
printed.

You can run Prolog on an Andrew machine via

/afs/andrew/course/15/317/bin/runprolog

Alternatively, you can download and install a copy locally from http:
//www.gprolog.org. You can load a file foo.pl at the Prolog prompt by
typing

?- [foo].

2

http://www.gprolog.org
http://www.gprolog.org


Issue queries by typing predicates at the prompt. If Prolog offers more
solutions, you can see them by typing ; and ignore them by pressing
enter.

In your submission for the following tasks, you can (and in some cases
should!) define helper predicates.

2.1 Mergesort

Task 5 (12 points). In this task, we’ll implement a predicate which can be
used to perform mergesort. Let L1@L2 indicate the concatenation of the
lists L1 and L2.

1. Implement a predicate split(L,L1,L2) which holds exactly when
L1 and L2 evenly partition L, that is, when L1@L2 is a permutation of
L, and L1 and L2 differ in length by at most one.

2. Implement a predicate merge(L1,L2,L) for sorted lists of integers
L1, L2, and L, which holds exactly when L is a sorted permutation
of L1@L2.

3. Implement a predicate mergesort(L1,L2) operating over two lists
of integers. Your predicate should use the aforementioned primi-
tives to implement mergesort; mergesort(L1,L2) should hold ex-
actly when L2 is a sorted permutation of L1.

2.2 n-rooks

Task 6 (12 points). Implement a predicate nrooks(A) which holds for a
two-dimensional list Awhen A contains exactly one rook in each row and
column, with all other entries empty. For example, your solution should
respond to the following queries like so, modulo order of responses:

| ?- nrooks([[empty,rook],[rook,empty]]).

true ? ;

no

| ?- nrooks([[A00,A01],[A10,A11]]).

A00 = empty

3



A01 = rook

A10 = rook

A11 = empty ? ;

A00 = rook

A01 = empty

A10 = empty

A11 = rook ? ;

no

| ?- nrooks([[A,B],[B,empty]]).

A = empty

B = rook ? ;

no

| ?- nrooks([[A,B],[A,empty]]).

no

4


	Quantifiers
	Prolog Programming
	Mergesort
	n-rooks


