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1 Introduction

We are now revisiting the missing connectives of quantifiers to study them
in sequent calculus [Gen35] with a structural cut elimination result [Pfe00].
There is no major difference between the original and the restricted sequent
calculus for quantifiers, so we handle both Γ =⇒ C and Γ −→ C at once.

2 Quantification in Sequent Calculus

In natural deduction for first-order intuitionistic logic, we had two forms
of hypotheses: A true and c : τ for parameters c. The latter form was intro-
duced into deductions by the ∀I and ∃E rules. In the sequent calculus we
make all assumptions explicit on the left-hand side of sequents. In order to
model parameters we therefore need a second kind of judgment on the left
that reads c : τ . It is customary to collect all such hypotheses in a differ-
ent context, denoted Σ for signature, that is separated from the remaining
antecedent Γ by a semicolon. A sequent then has the form

c1:τ1, . . . , cm:τm︸ ︷︷ ︸
Σ

; A1 left, . . . , An left︸ ︷︷ ︸
Γ

=⇒ C right

We assume that all parameters declared in a signature Σ are distinct. Some-
times this requires us to choose a parameter with a name that has not yet
been used. When writing down a sequent Σ; Γ =⇒ C we presuppose that
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L13.2 Quantifiers and Dependent Types

all parameters in Γ and C are declared in Σ. In the bottom-up construction
of a deduction we make sure to maintain this.

The typing judgment for terms, t : τ , can depend on the signature Σ but
not on logical assumptions A left . We therefore write Σ ` t : τ to express
that term t has type τ in signature Σ.

In all the propositional rules we have so far, the signature Σ is propa-
gated unchanged from the conclusion of the rule to all premises. In order
to derive the rules for the quantifiers, we reexamine verifications for guid-
ance, as we did for the propositional rules in Lecture 9.

Universal quantification. We show the verification for universal quanti-
fiers on the left and the corresponding right rule on the right.

c : τ...
A(c)↑

∀x:τ. A(x)↑
∀Ic

Σ, c:τ ; Γ =⇒ A(c)

Σ; Γ =⇒ ∀x:τ. A(x)
∀R

Our general assumption that the signature declares every parameter at
most once means that c cannot occur in Σ already or the rule would not
apply. Also note that Σ declares all parameters occurring in Γ, so c cannot
occur there, either, which is critical for soundness. Hence, proving from
assumption Γ that A(x) holds for all x of type τ amounts to proving A(c)
for a new generic c of that type.

The elimination rule that uses a universally quantified assumption cor-
responds to a left rule.

∀x:τ. A(x)↓ t : τ

A(t)↓
∀E

Σ ` t : τ Σ; Γ, ∀x:τ. A(x), A(t) =⇒ C

Σ; Γ,∀x:τ. A(x) =⇒ C
∀L

If we assume that A(x) holds for all x of type τ , we might as well also
assume that A(t) also holds for a term t of said type.

Existential quantification. Again, we derive the sequent calculus rules
from the introduction and elimination rules.

t : τ A(t)↑

∃x:τ. A(x)↑
∃I

Σ ` t : τ Σ; Γ =⇒ A(t)

Σ; Γ =⇒ ∃x:τ. A(x)
∃R
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Quantifiers and Dependent Types L13.3

Existence of an x of type τ for which A(x) is proved from assumptions Γ
after A(t) has been proved from assumptions Γ provided t indeed as said
type τ . The arbitrary term t is called witness.

As for disjunction elimination, the natural deduction rule already has
somewhat of the flavor of the sequent calculs.

∃x:τ. A(x)↓

c : τ A(c)↓
u

...
C↑

C↑
∃Ec,u

Σ, c:τ ; Γ, ∃x:τ. A(x), A(c) =⇒ C

Σ; Γ, ∃x:τ. A(x) =⇒ C
∃L

From the assumption that A(x) holds for some x of type τ , C follows, if C
follows from the additional assumption that A(c) holds for a new generic c
of that type. Of course, by the well-formedness assumptions on sequents,
c will be new (so not in Σ,Γ or C), which is important, because we could
hardly assume A(c) to hold for our specific favorite c if all we assume is
that A(x) holds for some x, which does not have to be our favorite c if c is
not actually new.

As an example, we prove that if there is a single x for all y such that
P (x, y) then it is also the case that for every y there is an x such that P (x, y).

a:τ, b:τ ` b:τ

a:τ, b:τ ` a:τ a:τ, b:τ ; ∀y:τ. P (b, y), P (b, a) =⇒ P (b, a)
init

a:τ, b:τ ; ∀y:τ. P (b, y) =⇒ P (b, a)
∀L

a:τ, b:τ ; ∀y:τ. P (b, y) =⇒ ∃x:τ. P (x, a)
∃R

a:τ ; ∃x:τ. ∀y:τ. P (x, y) =⇒ ∃x:τ. P (x, a)
∃L

; ∃x:τ. ∀y:τ. P (x, y) =⇒ ∀y:τ. ∃x:τ. P (x, y)
∀R

; =⇒ (∃x:τ. ∀y:τ. P (x, y))⊃(∀y:τ. ∃x:τ. P (x, y))
⊃R

Note how the init rule for initial sequents applies to atomic propositions,
even if they have the same parameters. So P (b, a) =⇒ P (b, a) closes by init,
but, of course, P (b, a) =⇒ P (c, a) does not, because P (b, a) and P (c, a) are
different atomic propositions since their parameters differ.

It is critically important in both ∀R and ∃L that the newly introduced
parameter c is indeed new and has not been used in the sequent yet. Oth-
erwise the rules would allow us to derive incorrect statements:
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L13.4 Quantifiers and Dependent Types

a:τ ; P (a) =⇒ P (a)
init

a:τ ; P (a) =⇒ ∀x:τ. P (x)
∀R??

; ∃x:τ. P (x) =⇒ ∀x:τ. P (x)
∃L

; =⇒ (∃x:τ. P (x))⊃(∀x:τ. P (x))
⊃R

3 Cut Elimination with Quantification

Continuing the cut theorem from a previous lecture, we generalize its state-
ment to obtain the cut theorem (and cut elimination) for first-order intu-
itionistic logic.

Theorem 1 (Cut) If Σ; Γ =⇒ A and Σ; Γ, A =⇒ C then Σ; Γ =⇒ C.

The cases for propositional connectives are as in our cut proof for intuition-
istic propositional logic, just with the typing context Σ carried around.

The proof of the cut theorem extends to the case where we add quan-
tifiers. A crucial property we need is substitution for parameters, which
corresponds to a similar substitution principle on natural deductions:

Lemma 2 (Parameter substitution) If Σ ` t : τ and Σ, c : τ ; Γ ` A then also
Σ; [t/c]Γ ` [t/c]A.

This lemma is proved by a straightforward induction over the structure
of the second deduction, appealing to some elementary properties such as
weakening where necessary.

We show only two cases of the extended proof of cut, where an existen-
tial (or universal) formula is cut and was just introduced on the right and
left, respectively.

Subcase:

D =

T
Σ ` t : τ

D1

Σ; Γ =⇒ A1(t)

Σ; Γ =⇒ ∃x:τ. A1(x)
∃R

and E =

E1
Σ, c:τ ; Γ,∃x:τ. A1(x), A1(c) =⇒ C

Σ; Γ, ∃x:τ. A1(x) =⇒ C
∃L
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Σ; Γ,∃x:τ. A1(x), A1(t) =⇒ C By substitution [t/c]E1 using T
Σ; Γ, A1(t) =⇒ C By i.h. on ∃x. A1(x), D, and [t/c]E1
Σ; Γ =⇒ C By i.h. on A1(t), D1, and above

The induction requires thatA1(t) is considered smaller than ∃x. A1(x).
Formally, this can be justified by counting the number of quantifiers
and logical connectives in a proposition and noting that the term t
does not contain any, so quantifiers are considered bigger than terms.
A similar remark applies to check that the proof [t/c]E1 is smaller than
E . Unlike a use of the induction hypothesis to perform a cut, a use of
the parameter substitution lemma does not improve the size of the
deduction (considering parameters bigger than terms of any size).
Also note how the side condition that c must be a new parameter in
the ∃L rule is required in the substitution step to ensure that it leaves
the rest of the sequent unchanged: [t/c]Γ = Γ, [t/c]A1(c) = A(t) =
[t/x]A1(x), as well as [t/c]∃x:τ. A1(x) = ∃x:τ. A1(x) and [t/c]C = C.

Subcase:

D =

D1

Σ, c:τ ; Γ =⇒ A1(c)

Σ; Γ =⇒ ∀x:τ. A1(x)
∀R

and E =

T
Σ ` t : τ

E1
Σ; Γ,∀x:τ. A1(x), A1(t) =⇒ C

Σ; Γ,∀x:τ. A1(x) =⇒ C
∀L

Σ; Γ, A1(t) =⇒ C By i.h. on ∀x. A1(x), D, E1
Σ; Γ =⇒ A1(t) By substitution [t/c]D1 using T
Σ; Γ =⇒ C By i.h. on A1(t) and the above two

It is again important that A1(t) is considered smaller than ∀x. A1(x).
The side condition that c must be a new parameter in ∀R is needed
to ensure that the substitution leaves Γ and C unchanged and that
[t/c]A1(c) = A1(t).

The restricted sequent calculus rule are the same except that the rep-
etition of formula ∃x:τ. A(x) in the antecedent of the premise of rule ∃L
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is unnecessary, since it will not help to give the parameter for the witness
that exists by said assumption yet another name in addition to the name c.
That is to be contrasted with rule ∀L where it may very well be helpful to
apply the universal knowledge that A(x) holds for all x of type τ to many
different terms t of said type. These sequent calculus rules for quantifiers
are summarized in Figure 1.

Σ, c:τ ; Γ −→ A(c)

Σ; Γ −→ ∀x. A(x)
∀R

Σ ` t : τ Σ; Γ,∀x:τ. A(x), A(t) −→ C

Σ; Γ, ∀x:τ. A(x) −→ C
∀L

Σ ` t : τ Σ; Γ −→ A(t)

Σ; Γ −→ ∃x:τ. A(x)
∃R

Σ, c:τ ; Γ, A(c) −→ C

Σ; Γ, ∃x:τ. A(x) −→ C
∃L

Figure 1: Sequent calculus rules for quantifiers

4 KeYmaera I: Uni-typed First-order Intuitionistic Logic

The KeYmaera I theorem prover you are working with in this class is forked
off of the theorem prover KeYmaera X for hybrid systems combining dis-
crete program dynamics and continuous differential equation dynamics
[FMQ+15]. In that hybrid systems setting, the reals are the canonical type
of interest, such that KeYmaera I only has a single object type. Since there
is only one type, we then write quantifiers as ∀xA(x) and ∃xA(x) instead.1

Since KeYmaera X needs no explicit typing judgments in the sequents,
KeYmaera I does not have any either (it type checks terms internally ob-
viously). So let us drop the typing context Γ and consider what happens
when we also drop all typing judgments.

Γ −→ A(c)

Γ −→ ∀xA(x)
∀R

Γ,∀xA(x), A(t) −→ C

Γ,∀xA(x) −→ C
∀L

Γ −→ A(t)

Γ −→ ∃xA(x)
∃R

Γ, A(c) −→ C

Γ,∃xA(x) −→ C
∃L

Are these rules sound?
1By leaving out the dot from the quantifier notation, we also indicate that the scope of

KeYmaera I quantifiers is short. So ∀xA(x) ∧B is (∀xA(x)) ∧B instead of ∀x (A(x) ∧B).
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No these rules are not sound unless we make up for what we lost from
the assumptions that were enforced via the typing contexts. Recall that se-
quents Σ; Γ =⇒ C were only allowed to mention parameters in Γ and C
that are also declared in the typing context Σ. Since we just lost the typing
context Σ, all parameters are allowed in the sequent. The bigger deal is
that the way we enforced that rules ∀R and ∃L introduced fresh parame-
ters c is via c being new in the the typing context Σ. That indirection no
longer works, so we, instead, directly require c to be new, so not occurring
anywhere in the sequent in the ∀R and ∃L rules.

With that sharpened understanding, the rules are sound as well. But it
is insightful to understand one nuance that has become more subtle after
having removed the explicit typing judgments from the quantifier rules.
The ∀L rule and ∃R rule lost their typing premise Σ ` t : τ which checks
that the term t is indeed of type τ in typing context Σ. When there is only
a single type, this check is redundant and hence the premise dropped. But
the remaining premise still needs the term t written down. How can such
a term be written down at all in a proof?

Especially if there is only one type, a decision needs to be made about
whether that type comes with appropriate term constructors or not. If it
does provide constructors (such as 0 : nat), then that directly implies that
something exists that satisfies no particular conditions, so ∃x> is true. Oth-
erwise, if the single type does not afford any constructors, then it may de-
note the empty type that is not inhabited because nothing of this type exists.
In the latter case ¬∃x>would be a distinct possibility and explicit assump-
tions about the existence of at least something (∃x>) are frequently needed
if one wants to talk about nonempty domains.

The possibility of types being uninhabited is an interesting one if there
are multiple types. But if there is only one type and that single type could
even be empty, then one is in the realm of free logic. KeYmaera I decides to
have constructors for its single type in order to make sure it does not talk
about an empty void. KeYmaera I is said to make the existence presupposi-
tion, because it assumes that something exists.

In order to understand the implications of existence presupposition (marked
∃∃ in the following proof for clarity), the following sequent is provable only
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for inhabited types, so it is provable under existence presupposition:

A(0) −→ A(0)
init

A(0) −→ ∃x:τ. A(x)
∃R

∀x:τ. A(x) −→ ∃x:τ. A(x)
∃L+ ∃∃

−→ ∀x:τ. A(x)⊃∃x:τ. A(x)
⊃R

In classical logic, existence presupposition is necessary to imply the
equivalence of ∀x:τ. A(x) and ¬∃x:τ. ¬A(x). Let us investigate whether
the existence presupposition also makes them equivalent in constructive
logic. One direction of the implication always works easily:

c:τ ; ∀x:τ. A(x), A(c),¬A(c) −→ A(c)
init

c:τ ; ∀x:τ. A(x), A(c),¬A(c) −→ ⊥
⊃L

c:τ ; ∀x:τ. A(x), A(c),⊥ −→ ⊥
⊥L

c:τ ; ∀x:τ. A(x),¬A(c) −→ ⊥
∀L

; ∀x:τ. A(x),∃x:τ. ¬A(x) −→ ⊥
∃L

; ∀x:τ. A(x) −→ ¬∃x:τ. ¬A(x)
⊃R

; −→ (∀x:τ. A(x))⊃(¬∃x:τ. ¬A(x))
⊃R

The other direction is rather more difficult. The first steps are deterministic
following what we saw in inversion and the contraction-free calculus:

c:τ ; ¬∃x:τ. ¬A(x) −→ ∃x:τ. ¬A(x) c:τ ; ⊥ −→ A(c)
⊥L

c:τ ; ¬∃x:τ. ¬A(x) −→ A(c)
⊃L

; ¬∃x:τ. ¬A(x) −→ ∀x:τ. A(x)
∀R

; −→ (¬∃x:τ. ¬A(x))⊃(∀x:τ. A(x))
⊃R

At this point there is a choice. We could apply ⊃L again but this would
loop giving the same sequent again, which, as we saw in previous lectures,
cannot lead to a proof that we do not also find in shorter form without ap-
plying that redundant rule. The only other option is to use ∃R to continue
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the first premise using some term 0 from existence presupposition:

c:τ ; ¬∃x:τ. ¬A(x), A(0) −→ ∃x:τ. ¬A(x) c:τ ; ⊥, A(0) −→ ⊥
⊥L

c:τ ; ¬∃x:τ. ¬A(x), A(0) −→ ⊥
⊃L

c:τ ; ¬∃x:τ. ¬A(x) −→ ¬A(0)
⊃R

c:τ ; ¬∃x:τ. ¬A(x) −→ ∃x:τ. ¬A(x)
∃R

At this point there is another choice to apply either ⊃L or ∃R. The former
would again lead to a loop, so we do not need to pursue it since, if there is
a proof at all, there is a shorter proof. The remaining premise thus has to
continue with ∃R either with the same suspected witness 0:

c:τ ; ¬∃x:τ. ¬A(x), A(0), A(0) −→ ⊥

c:τ ; ¬∃x:τ. ¬A(x), A(0) −→ ¬A(0)
⊃R

c:τ ; ¬∃x:τ. ¬A(x), A(0) −→ ∃x:τ. ¬A(x)
∃R

at which point there is nothing left to try but loop with ⊃L. Or to instead
continue the above proof with a different witness, say t:

c:τ ; ¬∃x:τ. ¬A(x), A(0), A(t) −→ ⊥

c:τ ; ¬∃x:τ. ¬A(x), A(0) −→ ¬A(t)
⊃R

c:τ ; ¬∃x:τ. ¬A(x), A(t) −→ ∃x:τ. ¬A(x)
∃R

at which point there is again nothing left to try but loop with ⊃L. Since
we have exhausted all options in the proof, we conclude that the following
direction is not provable so not true in constructive logic

(¬∃x:τ. ¬A(x))⊃(∀x:τ. A(x))

As another illustration of the ideas from previous lectures, observe how
useful it was for this proof of nonprovability to have a solid understanding
of what proof search not to try. Generally, however, the terms that need to
be instantiated in quantifiers make proof search matters significantly more
challenging but also significantly more interesting than propositional logic.
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