Constructive Logic (15-317), Fall 2015
Assignment 7: Sequent Calculus for Proof Search

Michael Coblenz (mcoblenz@cs.cmu.edu);
with credit to Joe Tassarotti and Evan Cavallo

Out: Tuesday, October 20, 2015
Due: Tuesday, October 27, 2015 (before class)

In this assignment, you will explore the G4ip sequent calculus and see how
it may be used to build a simple yet realistic theorem prover for intuitionistic
propositional logic. By the end of the assignment, you will have implemented
a sound and complete proof search procedure capable of proving automatically
any of the propositional theorems you’ve proven manually this semester using
Tutch.

The written and programming portion of your work (Section 3) should be
submitted via AFS by putting your PDF and code in the directory

/afs/andrew/course/15/317/submit/<userid>/hw0®7

where <userid> is replaced with your Andrew ID.

1 Invertibility (6 points)

Consider the two connectives ©(A, B, C) and ¢(A, B, C) defined below:
[A true] [B true]

C t'rug C t.rue Q(A,B,C) true A true Q(A,B,C) true B true

Q QE; QE,
O(A, B, C) true C true C true
[A true] [B true]
C t.rue C t;’ue (A, B,C) true A true B true
— 0l — 9l OE
(A, B, C) true (A, B, C) true C true

Task 1 (6 pts). For each of the above rules, say whether it is invertible or not.
Explain your answers.

2 Manual Theorem Proving (10 points)

In order to get some practice using the G4ip system, write proofs for these
propositions using the rules of G4ip (see Appendix A). Assume that P, Q, R, and
S stand for atomic propositions.

Task 2. (5 points)
— (PO2Q)DRA((PDQ)D2SD(PD>Q)DR
Task 3. (5 points)

— ((PVQ)AR)DS)DRA(QVP)DS

3 Automated Theorem Proving (24 points)

Because G4ip’s rules all reduce the “weight” of the formulas making up the
sequent when read bottom-up, it is straightforward to see that it represents
a decision procedure even without the benefit of loop checking. The rules
themselves are non-deterministic, though, so one must invest some effort in
extracting a deterministic implementation from them.

Task 4 (25 pts). Implement a proof search procedure based on the G4ip calculus.
Efficiency should not be a primary concern, but see the hints below regarding
invertible rules. Strive instead for correctness and elegance, in that order.

You should write your implementation in Standard ML.! Some starter code
is provided in the file prop.sml to clarify the setup of the problem and give
you some basic tools for debugging (see Figure 1). Implement a structure G4ip
matching the signature G4IP. A simple test harness assuming this structure is
given in the structure Test in the file test.sml. Feel free to post any additional
interesting test cases you encounter to the course bulletin board.

Here are some hints to help guide your implementation:

e Be sure to apply all invertible rules before you apply any non-invertible
rules. Recall that the only non-invertible rules in G4ip are VR;, VR,
and DDL, but that POL and the init rule cannot always be applied asyn-
chronously. One simple way to ensure that you do inversions first is to

f you are not comfortable writing in Standard ML, you should contact the instructors and
the TA to work out an alternate arrangement.

signature PROP =
sig

datatype prop = (* A ::=
Atom of string (P
| True (* | T
| And of prop * prop (* | Al & A2
| False & | F
| Or of prop * prop (| A1 | A2
| Implies of prop * prop * | A1 => A2
val Not : prop -> prop (* "A :=A=>F
val toString : prop -> string
end
structure Prop :> PROP = ...
signature G4IP =
sig
(* [decide A = true] iff . ===> A has a proof,
[decide A = false] iff . ===> A has no proof *)
val decide : Prop.prop -> bool
end

Figure 1: SML starter code for G4ip theorem prover.

maintain a second context of non-invertible propositions and to process it
only when the invertible context is exhausted.

e When it comes time to perform non-invertible search, you’ll have to con-
sider all possible choices you might make. Many theorems require you to
use your non-invertible hypotheses in a particular order, and unless you
try all possible orders, you may miss a proof.

e The provided test cases can help you catch many easy-to-make errors. Test
your code early and often! If you come up with any interesting test cases
of your own that help you catch other errors, we encourage you to share
them via the course bulletin board.

There are many subtleties and design decisions involved in this task, so don’t
leave it until the last minute!

A Complete G4ip Rules

Init Rule
——— init
AP— P
Ordinary Rules
A—C
TR —— TL
A—T AT—C
AR ——— AL
A— AANB ANAANB—C
(no LR rule) AL —C
A— A A — B ANA—C AB—C
—— X VR ——— VR, VL
A— AV B A— AVB AAVB—C
AA— B
— DR
A— ADB
Compound Left Rules
PeA AB—C
PoL
APDB— C
AB— C ANDDEDB—C
—— = ToL ADL
A TODB—C ANDANEDB—C
A—C A D>DB,EDB—C
———— 10L VDL
A, LD>DB—C ADVEDB—C

ADEDB—E AB—C
A(DDE)DB—C

ODL

