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1 Introduction

The sequent calculus we have introduced so far maintains a close corre-
spondence to natural deductions or, more specifically, to verifications. One
consequence is persistence of antecedents: once an assumption has been intro-
duced in the course of a deduction, it will remain available in any sequent
above this point. While this is appropriate in a foundational calculus, it is
not ideal for proof search since rules can be applied over and over again
without necessarily making progress. We therefore develop a second se-
quent calculus and then a third in order to make the process of bottom-
up search for a proof more efficient by reducing unnecessary choices in
proof search. By way of the previous link of the sequent calculus with
verification-style natural deductions, this lecture will, thus, give rise to a
more efficient way of coming up with natural deduction proofs.

This lecture marks the begin of a departure from the course of the lec-
tures so far, which, broadly construed, focused on understanding what a
constructive proof is and what can be read off or done once one has such a
proof. Now we begin to move toward the question of how to find such a
proof in the first place.

∗With edits by André Platzer
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2 A More Restrictive Sequent Calculus

Ideally, once we have applied an inference rule during proof search (that is,
bottom-up), we should not have to apply the same rule again to the same
antecedent. Since all rules decompose formulas, if we had such a sequent
calculus, we would have a simple and clean decision procedure. As it turns
out, there is a fly in the ointment, but let us try to derive such a system.

We write Γ −→ C for a sequent whose deductions try to eliminate
principal formulas as much as possible. We keep the names of the rules,
since they are largely parallel to the rules of the original sequent calculus,
Γ =⇒ C.

Conjunction. The right rule works as before; the left rule extracts both
conjuncts so that the conjunction itself is no longer needed.

Γ −→ A Γ −→ B

Γ −→ A ∧B
∧R

Γ, A,B −→ C

Γ, A ∧B −→ C
∧L

Observe that for both rules, all premises have smaller sequents than the
conclusion if one counts the number of connectives in a sequent.

It is easy to see that these rules are sound with respect to the ordinary
sequent calculus rules. Soundness here is the property that if Γ −→ C then
Γ =⇒ C. Completeness if generally more difficult. What we want to show
is that if Γ =⇒ C then also Γ −→ C, where the rules for the latter sequents
are more restrictive, by design. The proof of this will eventually proceed by
induction on the structure of the given deduction D and appeal to lemmas
on the restrictive sequent calculus. For example:
Case: (of completeness proof)

D =

D1

Γ, A ∧B,A =⇒ C

Γ, A ∧B =⇒ C
∧L1

Γ, A ∧B,A −→ C By i.h. on D1

Γ, A,B −→ A By identity for −→
Γ, A ∧B −→ A By ∧L
Γ, A ∧B −→ C By cut for −→

We see that identity and cut for the restricted sequent calculus is needed
to show completeness in the sense described above. Fortunately, they hold
(see further notes at the end of the lecture). We will not formally justify
many of the rules, but give informal justifications or counterexamples.
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Truth. There is a small surprise here, in that, unlike in natural deduction
which had no elimination rule for >, we can have a left rule for >, which
eliminates it from the antecedents (cleanup). It is analogous to the zero-ary
case of conjunction.

Γ −→ >
>R

Γ −→ C

Γ,> −→ C
>L

Atomic propositions. They are straightforward, since the initial sequents
do not change.

Γ, P −→ P
init

Disjunction. The right rules to do not change; in the left rule we can elim-
inate the principal formula.

Γ −→ A

Γ −→ A ∨B
∨R1

Γ −→ B

Γ −→ A ∨B
∨R2

Γ, A −→ C Γ, B −→ C

Γ, A ∨B −→ C
∨L

Intuitively, the assumption A ∨ B can be eliminated from both premises
of the ∨L rule, because the new assumptions A and B are stronger. More
formally:

Case: (of completeness proof)

D =

D1

Γ, A ∨B,A =⇒ C
D2

Γ, A ∨B,B =⇒ C

Γ, A ∨B =⇒ C
∨L

Γ, A ∨B,A −→ C By i.h. on D1

Γ, A −→ A By identity for −→
Γ, A −→ A ∨B By ∨R1

Γ, A −→ C By cut for −→

Γ, A ∨B,B −→ C By i.h. on D2

Γ, B −→ B By identity for −→
Γ, B −→ A ∨B By ∨R2

Γ, B −→ C By cut for −→

Γ, A ∨B −→ C By rule ∨L
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Falsehood. There is no right rule, and the left rule has no premise, which
means it transfers directly.

no ⊥R rule Γ,⊥ −→ C
⊥L

Implication. In all the rules so far, all premises have fewer connectives
than the conclusion. For implication, we will not be able to maintain this
property.

Γ, A −→ B

Γ −→ A⊃B
⊃R

Γ, A⊃B −→ A Γ, B −→ C

Γ, A⊃B −→ C
⊃L

Here, the assumption A⊃B persists in the first premise but not in the
second. Unfortunately, A⊃B may be needed again in that branch of the
proof. An example which requires the implication more than once is −→
¬¬(A∨¬A), where ¬A = A⊃⊥ as usual. Without that additional assump-
tion (marked in red below), the proof would not work:

¬(A ∨ ¬A), A −→ A
id

¬(A ∨ ¬A), A −→ A ∨ ¬A
∨R1

A,⊥ −→ ⊥
init

¬(A ∨ ¬A), A −→ ⊥
⊃L

¬(A ∨ ¬A) −→ ¬A
⊃R

¬(A ∨ ¬A) −→ A ∨ ¬A
∨R2

⊥ −→ ⊥
init

¬(A ∨ ¬A) −→ ⊥
⊃L

−→ ¬¬(A ∨ ¬A)
⊃R

Now all rules have smaller premises (if one counts the number of logical
constants and connectives in them) except for the ⊃L rule. We will address
the issue with ⊃L in the next lecture.

Nevertheless, we can interpret the rules as a decision procedure if we
make the observation that in bottom-up proof search we are licensed to fail
a branch if along it we have a repeating sequent. If there were a deduc-
tion, we would be able to find it applying a different choice at an earlier
sequent, lower down in the incomplete deduction. But if we apply contrac-
tion (which is admissible in the restricted sequent calculus) then there are
only finitely many sequents because antecedents and succedents are com-
posed only of subformulas of our original proof goal. One can be much
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more efficient in loop checking than this [How98, Chapter 4], but just to see
that intuitionistic propositional calculus is decidable, this is sufficient. In
fact, we could have made this observation on the original sequent calculus,
although it would be even further from a realistic implementation.

3 Metatheory of the Restricted Sequent Calculus

We only enumerate the basic properties.

Theorem 1 (Weakening) If Γ −→ C then Γ, A −→ C with a structurally iden-
tical deduction.

Theorem 2 (Atomic contraction) If Γ, P, P −→ C then Γ, P −→ C with a
structurally identical deduction

Theorem 3 (Identity) A −→ A for any proposition A.

Proof: By induction on the structure of A. �

Theorem 4 (Cut) If Γ −→ A and Γ, A −→ C then Γ −→ C

Proof: Analogous to the proof for the ordinary sequent calculus in Lecture
8. In the case where the first deduction is initial, we use atomic contraction.
�

Theorem 5 (Contraction) If Γ, A,A −→ C then Γ, A −→ C.

Proof: Γ, A −→ A by identity and weakening. Therefore Γ, A −→ C by
cut. �

Theorem 6 (Soundness wrt. =⇒) If Γ −→ A then Γ =⇒ A.

Proof: By induction on the structure of the given deduction. �

Theorem 7 (Completeness wrt. =⇒) If Γ =⇒ A then Γ −→ A.

Proof: By induction on the structure of the given deduction, appealing to
identity and cut in many cases. See the cases for∧L1 and∨L in the previous
section. �
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4 Invertible Rules

The restrictive sequent calculus in the previous section is a big improve-
ment, but if we use it directly to implement a search procedure it is hope-
lessly inefficient. The problem is that for any goal sequent, any left or right
rule might be applicable. But the application of a rule changes the sequent
just a little—most formulas are preserved and we are faced with the same
choices at the next step. Eliminating this kind of inefficiency is crucial for a
practical theorem proving procedure.

The first observation, to be refined later, is that certain rules are invert-
ible, that is, the premises hold iff the conclusion holds. This is powerful,
because we can apply the rule and never look back and consider any other
choice.

As an example, consider ∧R. For this to be invertible means that if
the conclusion holds then both premises hold. In other words, we have to
show: If Γ −→ A ∧ B then Γ −→ A and Γ −→ B, which is the opposite of
what the rule itself expresses. Fortunately, this follows easily by cut, since
Γ, A ∧B −→ A and Γ, A ∧B −→ B.

In order to formalize the strategy of applying inversions eagerly, with-
out backtracking over the choices of which invertible rules to try, we refine
the restricted sequent calculus further into two, mutually dependent forms
of sequents.

Γ−; Ω
R−→ C Decompose C on the right

Γ−; Ω
L−→ C+ Decompose Ω on the left

Here, Ω is an ordered context (say, a stack) that we only access at the right
end. Γ− is a context restricted to those formulas whose left rules are not
invertible, and C+ is a formula whose right rule is not invertible. Both of

these can also contain atoms. Only left decompositions Γ−; Ω
L−→ C+ are

restricted to have a formula with a connective of a non-invertible right-rule.

Right decompositions Γ−; Ω
R−→ C are unrestricted. The idea is that decom-

positions in the ordered context Ω should be preferred when the succedent
is of the form C+ so does not have a canonical search-free decomposition.
Overall, actions in the ordered context Ω will turn out to be deterministic
while those for Γ− involve decisions and search. That gives eager invertible
decompositions and lazy search for non-invertibles.

After we have developed the rules we will summarize the forms of Γ−

and C+. We refer to this as the inversion calculus. Rather than organizing
the presentation by connective, we will follow the judgments, starting on
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the right. That presentation order will enable us to emphasize the intended
search order and exhaustiveness of the resulting procedure.

Right inversion. We decompose conjunction, truth, and implication ea-
gerly on the right and on the left, because both rules are invertible and can
easily be checked.

Γ−; Ω
R−→ A Γ−; Ω

R−→ B

Γ−; Ω
R−→ A ∧B

∧R
Γ−; Ω =⇒ >

>R
Γ−; Ω, A

R−→ B

Γ−; Ω
R−→ A⊃B

⊃R

If we encounter an atomic formula, we succeed if it is among the antecedents;
otherwise we switch to left inversion.

P ∈ Γ−

Γ−; Ω
R−→ P

init
P 6∈ Γ− Γ−; Ω

L−→ P

Γ−; Ω
R−→ P

LRP

If we encounter disjunction or falsehood, we punt and switch to left inver-
sion.

Γ−; Ω
L−→ A ∨B

Γ−; Ω
R−→ A ∨B

LR∨
Γ−; Ω

L−→ ⊥

Γ−; Ω
R−→ ⊥

LR⊥

Disjunctions would need a commitment whether their left or their right
disjunct is proved. Switching to left inversion postpones that choice until
we maximize what we know.

Left inversion. The next phase performs left inversion at the right end of
the ordered context Ω. Note that for each logical connective or constant,
there is exactly one rule to apply.

Γ−; Ω, A,B
L−→ C+

Γ−; Ω, A ∧B
L−→ C+

∧L
Γ−; Ω

L−→ C+

Γ−; Ω,> L−→ C+
>L

Γ−; Ω, A
L−→ C+ Γ−; Ω, B

L−→ C+

Γ−; Ω, A ∨B
L−→ C+

∨L
Γ−; Ω,⊥ L−→ C+

⊥L

Observe how helpful it is that the succedent of ∨L is already decomposed
to C+ so has no invertible right rule, otherwise we would have to repeat the
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same effort decomposing the succedent by right inversion on both premises
of ∨L. For atomic formulas, we look to see if it matches the right-hand side
and, if so, succeed. Otherwise, we move it into Γ− since we cannot operate
on the atomic formula P any longer (it is non-invertible since there are no
rules for it, besides we hope to match it up via init ultimately).

P = C+

Γ−; Ω, P
L−→ C+

init
Γ−, P ; Ω

L−→ C+

Γ−; Ω, P
L−→ C+

shiftP

Finally, in the inversion phase, if the formula on the left is an implication,
which can not be inverted, we move it into Γ−.

Γ−, A⊃B; Ω
L−→ C+

Γ−; Ω, A⊃B
L−→ C+

shift⊃

The search process described so far is deterministic and either succeeds
finitely with a deduction, or we finally have to make a decision we might
regret. Such decisions become necessary when the ordered context has be-
come empty (marked ·). At this point either one of the ∨R or⊃L rules must
be tried.

Γ−; · R−→ A

Γ−; · L−→ A ∨B

∨R1

Γ−; · R−→ B

Γ−; · L−→ A ∨B

∨R2

Γ−, A⊃B; · R−→ A Γ−;B
L−→ C+

Γ−, A⊃B; · L−→ C+
⊃L

After making a choice, we go back to a phase of inversion, either on the
right (in the first premise or only premise) or on the left (in the second
premise of ⊃L). Right inversion is the appropriate phase for ∨R1, ∨R2 and
the first premise of ⊃L, since the resulting formula A or B, respectively,
might very well have an invertible connective so should be handled with
the deterministic search first. For the second premise of⊃L, right inversion
would be pointless, because its succedent C+ is already known to have a
non-invertible connective. Finally observe how all inversion rules make
some progress to simplify the sequents, which, in the propositional setting,
can happy only finitely often.

Again, it is easy to see that the inversion calculus is sound, since it is a
further restriction on the rules from the sequent calculus. It is more difficult
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to see that it is complete. We will not carry out this proof, but just mention
that it revolves around the invertibility of the rules excepting only ∨R1,
∨R2, and ⊃L.

The inversion calculus is a big step forward, but it does not solve the
problem with the left rule for implication, where the principal formula is
copied to the first premise. We will address this in the next lecture with a
so-called contraction-free calculus.
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