
Lecture Notes on
Bottom-Up LR Parsing

15-411: Compiler Design
Frank Pfenning∗

Lecture 9
September 23, 2009

1 Introduction

In this lecture we discuss a second parsing algorithm that traverses the
input string from left to right. The parsing algorithm LL(1) from the last
lecture makes a decision on which grammar production to use based on
the first character of the input string. Now we consider LR(1), which can
postpone the decision at first by pushing input characters onto a stack and
then deciding on the production later, taking into account both the first in-
put character and the stack. There are several LL parser generator tools and
several LR parser generator tools. Most hand-written parsers are recursive
descent parsers, which follow the LL(1) principles.

Alternative presentations of the material in this lecture can be found in
a paper by Shieber et al. [SSP95]. The textbook [App98, Chapter 3] covers
parsing. For more detailed background on parsing, also see [WM95].

2 LR(1) Parsing

One difficulty with LL(1) parsing is that it is often difficult or impossible to
rewrite a grammar so that 1 token look-ahead during a left-to-right traver-
sal becomes unambiguous. To illustrate this, we return to the earlier exam-

∗With edits by André Platzer

LECTURE NOTES SEPTEMBER 23, 2009

L9.2 Bottom-Up LR Parsing

ple of simple arithmetic expressions.

[plus] E −→ E + E
[times] E −→ E * E
[ident] E −→ id
[number] E −→ num
[parens] E −→ (E)

If we see a simple expression such as 3 + 4 * 5 (which becomes the to-
ken stream num + num * num), we cannot predict when we see the +
symbol which production to use because of the inherent ambiguity of the
grammar.

We can rewrite the grammar, at significant expense of readability, or we
could just specify that multiplication has higher precedence than addition,
+ < *. Obviously, the latter is more convenient, but how can we make it
work?

The idea is to put off the decision on which productions to use and just
shift the input symbols onto a stack until we can finally make the decision!
We write

γ | w parse input w under stack γ

where, as generally in predictive parsing, the rules are interpreted as tran-
sitions from the conclusion to the premises. The parsing attempt succeeds
if we can consume all of w and and produce the start symbol S on the
left-hand side. That is, the deduction representing a successful parse of
terminal string w0 has the form

S | ε
R1

...
ε | w0

Parsing is defined by the following rules:

S | ε
R1

γ a | w

γ | aw
R2(= shift)

[r]X −→ β
γ X | w

γ β | w
R3(r)(= reduce(r))

LECTURE NOTES SEPTEMBER 23, 2009

Bottom-Up LR Parsing L9.3

We resume the example above, parsing num + num * num . After one step
(reading this bottom-up)

num | + num * num ?
ε | num + num * num shift

we already have to make a decision: should we shift + or should we reduce
num using rule [number]. In this case the action to reduce is forced, because
we will never get another chance to see this num as an E.

E | + num * num ?
num | + num * num reduce(number)

ε | num + num * num shift

At this point we need to shift +; no other action is possible. We take a few
steps and arrive at

E + E | * num
E +num | * num reduce(number)

E + | num * num shift
E | + num * num shift

num | + num * num reduce(number)
ε | num + num * num shift

At this point, we have a real conflict. We can either reduce, viewing E + E
as a subexpression, or shift and later consider E * E as a subexpression.
Since the * has higher precedence than +, we need to shift.

E | ε R1

E + E | ε reduce(plus)
E + E * E | ε reduce(times)

E + E * num | ε reduce(number)
E + E * | num shift
E + E | * num shift

E +num | * num reduce(number)
E + | num * num shift
E | + num * num shift

num | + num * num reduce(number)
ε | num + num * num shift

Since E was the start symbol in this example, this concludes the deduction.
If we now read the lines from the top to the bottom, ignoring the separator,

LECTURE NOTES SEPTEMBER 23, 2009

L9.4 Bottom-Up LR Parsing

we see that it represents a rightmost derivation of the input string. So we
have parsed analyzing the string from left to right, constructing a rightmost
derivation. This type of parsing algorithms is called LR-parsing, where
the L stands for reading the input from left-to-right and the R stands for
producing the rightmost derivation.

The decisions above are based on the postfix of the stack on the left-
hand side and the first token lookahead on the right-hand side. Here, the
postfix of the stack on the left-hand side must be a prefix substring of a gram-
mar production. If not, it would be impossible to complete it in such a way
that a future grammar production can be applied in a reduction step: the
parse attempt is doomed to failure.

3 LR(1) Parsing Tables

We could now define again a slightly different version of follow(γ,a), where
γ is a prefix substring of the grammar or a non-terminal, and then special-
ize the rules. An alternative, often used to describe parser generators, is
to construct a parsing table. For an LR(1) grammar, this table contains an
entry for every prefix substring of the grammar and every token seen on
the input. An entry describes whether to shift, reduce (and by which rule),
or to signal an error. If the action is ambiguous, the given grammar is not
LR(1), and either an error message is issued, or some default rule comes
into effect that choses between the option.

We now construct the parsing table, assuming + < *, that is, multiplica-
tion binds more tightly than addition. Moreover, we specify that both addi-
tion and multiplication are left associative so that, for example, 3 + 4 + 5
should be parsed as (3 + 4) + 5. We have removed id since it behaves
identically to num .

[plus] E −→ E + E
[times] E −→ E * E
[number] E −→ num
[parens] E −→ (E)

As before, we assume that a special end-of-file token $ has been added to
the end of the input string. When the parsing goal has the form γ β | aw
where β is a prefix substring of the grammar, we look up β in the left-most
column and a in the top row to find the action to take. The non-terminal
εE in the last line is a special case in that E must be the only thing on the

LECTURE NOTES SEPTEMBER 23, 2009

Bottom-Up LR Parsing L9.5

stack. In that case we can accept if the next token is $ because we know
that $ can only be the last token of the input string.

+ * num () $

E + E reduce(plus) shift error error reduce(plus) reduce(plus)
(+ left assoc.) (+ < *)

E * E reduce(times) reduce(times) error error reduce(times) reduce(times)
(+ < *) (* left assoc.)

num reduce(number) reduce(number) error error reduce(number) reduce(number)
(E) reduce(parens) reduce(parens) error error reduce(parens) reduce(parens)
E + error error shift shift error error
E * error error shift shift error error
(E shift shift error error shift error
(error error shift shift error error

ε E shift shift error error error accept(E)

We can see that the bare grammar has four shift/reduce conflicts, while
all other actions (including errors) are uniquely determined. These conficts
arise when E + E or E * E is on the stack and either + or * is the first
character in the remaining input string. It is called a shift/reduce conflict,
because either a shift action or a reduce action could lead to a valid parse.
Here, we have decided to resolve the conflicts by giving a precedence to
the operators and declaring both of them to be left-associative.

It is also possible to have reduce/reduce conflicts, if more than one re-
duction could be applied in a given situation, but it does not happen in this
grammar.

Parser generators will generally issue an error or warning when they
detect a shift/reduce or reduce/reduce conflict. For many parser genera-
tors, the default behavior of a shift/reduce conflict is to shift, and for a re-
duce/reduce conflict to apply the textually first production in the grammar.
Particularly the latter is rarely what is desired, so we strongly recommend
rewriting the grammar to eliminate any conflicts in an LR(1) parser.

One interesting special case is the situation in a language where the else-
clause of a conditional is optional. For example, one might write (among
other productions)

S −→ IS
S −→ E
E −→ ID
IS −→ if E then S
IS −→ if E then S else S

LECTURE NOTES SEPTEMBER 23, 2009

L9.6 Bottom-Up LR Parsing

Now a statement

if (b) then if (c) then x else y

is ambiguous because it could be read as

if (b) then (if (c) then x) else y

or

if (b) then (if (c) then x else y)

In fact, LR parsers will report a shift/reduce conflict for this grammar.
In a shift/reduce parser, typically the default action for a shift/reduce

conflict is to shift. This means that the above grammar in a tool such as
ML-Lex will parse the ambiguous statement into the second form, that is,
the else is match with the most recent unmatched if. This is consistent
with language such as C (or the language used in this course), so we can
tolerate the above shift/reduce conflict, if you wish, instead of rewriting
the grammar to make it unambiguous. Yet, this is a dangerous business,
because we depend on the mercy of the LR parser generator to hopefully
choose the right conflict resolutions for us.

state 7 contains 1 shift/reduce conflict.
...
state 7

SI -> if E then S . (rule 4)
IS -> if E then S . else S (rule 5)
else shift, and go to state 8
else [reduce using rule 4 (IS)]
$default reduce using rule 4 (IS)

How else can we fix the conflict? The easiest and best fix is to change the
language and require some form of an end if token. This solution will
also make the subtlety transparent to the user, because there can no longer
be surprises in how the ambiguity is resolved. The problem is that this
changes the language. The other fix is to disambiguate the grammar by
factorization.

S −→ IS
S −→ E
E −→ ID
IS −→ if E then S
IS −→ if E then ITE else S
ITE −→ if E then ITE else ITE
ITE −→ E

LECTURE NOTES SEPTEMBER 23, 2009

Bottom-Up LR Parsing L9.7

The effect of this factorization is that the then part of an if-then-else state-
ment can no longer be a single if-then statement. It has to be a full if-then-
else or not an if-statement at all.

4 Implementations of LR Parser Generators

LR parser generators are quite tricky to implement. A full coverage of how
they work would need several lectures. The principle behind actual imple-
mentations of LR parser generators is to define a nondeterministic (push-
down) automaton called characteristic automaton that follows all possible
parse positions. This characteristic automaton is then turned into an actual
implementation by converting it into a deterministic (pushdown) automa-
ton using the subset construction. This automaton will follow all possible
analysis situations until a reduce becomes evident. There are several sim-
ilarities between lexer generators (previous lectures) and LR parser gen-
erators. In fact, lexers can actually be generated using a special case of
LR grammars called LALR(0), where we leave out the stack so that every
shifted character has to be reduced immediately.

References

[App98] Andrew W. Appel. Modern Compiler Implementation in ML. Cam-
bridge University Press, Cambridge, England, 1998.

[SSP95] Stuart M. Shieber, Yves Schabes, and Fernando C. N. Pereira. Prin-
ciples and implementation of deductive parsing. J. Log. Program.,
24(1&2):3–36, 1995.

[WM95] Reinhard Wilhelm and Dieter Maurer. Compiler Design. Addison-
Wesley, 1995.

LECTURE NOTES SEPTEMBER 23, 2009

	Introduction
	LR(1) Parsing
	LR(1) Parsing Tables
	Implementations of LR Parser Generators

