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Abstract

We formalize the soundness theorem for differential dy-
namic logic, a logic for verifying hybrid systems. To increase
confidence in the formalization, we present two versions:
one in Isabelle/HOL and one in Coq. We extend the metathe-
ory to include features used in practice, such as systems of
differential equations and functions of multiple arguments.
We demonstrate the viability of constructing a verified ker-
nel for the hybrid systems theorem prover KeYmaera X by
embedding proof checkers for differential dynamic logic in
Coq and Isabelle. We discuss how different provers and li-
braries influence the design of the formalization.

Categories and Subject Descriptors F.3.1 [Specifying and

Verifying and Reasoning about Programs]: Mechanical ver-
ification

Keywords differential dynamic logic, hybrid systems veri-
fication, KeYmaera X, formalization

1. Introduction

Cyber-physical systems such as autonomous cars or water
supply systems operate in close proximity of humans or
control life-critical resources, and therefore require strong
safety guarantees. The highest level of assurance currently
known to mankind is obtained through formal verification
of such safety properties using proof assistants. Because
many cyber-physical systems can be modeled as hybrid sys-
tems, formally verifying hybrid systems is an important task.
Differential dynamic logic (dL) [36, 37, 39] offers an ef-
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fective approach for formal verification of hybrid systems:
Compared with model-checking-based approaches [15] it
offers a high level of expressiveness and precision, and in
contrast to other logics [43] it provides general, compo-
sitional rules for hybrid systems reasoning. The theorem
prover KeYmaera X [17] implements the proof rules of dL
and extensive tactic-based automation. Because verifying
hybrid systems is important, it is equally important to en-
sure the verification tool is correct. KeYmaera X simplifies
correctness significantly by maintaining a small soundness-
critical core of approximately 1700 lines of code, using a
proof calculus based on uniform substitution and supported
by mathematical proof [39].

But, even if small and straightforward, uniform substitu-
tions still need to be implemented correctly. Moreover, the
soundness proofs themselves are involved and rely on non-
trivial theorems about differential equations. The purpose of
this paper, thus, is

1. to provide independent justification of the correctness
of differential dynamic logic by formalizing1 its syntax,
semantics, axiomatization, and soundness proofs in Is-
abelle [33, 34] and Coq [1, 9], and

2. to obtain verified prover kernels for dL from these mech-
anizations of the uniform substitution calculus, first em-
bedded in Isabelle and Coq, but in the future also ex-
tracted as stand-alone programs.

Ironically, this increases the trusted computing base of the
individual kernels. They now depend on the correctness of
their proof assistant as well as the definitions in our formal-
izations. However, the guarantees we gain are of a funda-
mentally different nature: formalization gives us confidence
in the soundness proof for dL, which cannot be addressed by
reducing the size of the core. Multiple cores with indepen-
dent justification are always more trustworthy than an indi-
vidual core: mistakes now would have to go unnoticed in all
of them. Moreover, the chosen provers are under substantial
scrutiny.

1 Our Isabelle and Coq implementations are available at https://
github.com/LS-Lab/Isabelle-dL and https://github.
com/LS-Lab/Coq-dL, respectively.

https://github.com/LS-Lab/Isabelle-dL
https://github.com/LS-Lab/Isabelle-dL
https://github.com/LS-Lab/Coq-dL
https://github.com/LS-Lab/Coq-dL


A verified prover kernel is only ultimately useful if the
verification addresses the reasoning principles used in prac-
tice. This is important since prover implementations often
contain features that are used in practice but not addressed
by the theory. In the case of KeYmaera X this includes gen-
eralizing single ODEs [39] to systems of ODEs vectorially
[36], as well as bound and uniform variable renaming. In-
deed, our verification effort exposed a subtle soundness bug
in the implementation of bound variable renaming in KeY-
maera X, which has since been fixed.

2. Background

2.1 Differential Dynamic Logic

Differential dynamic logic (dL) [36, 37, 39] is a logic for
proving properties of hybrid systems expressed as hybrid

programs, a programming language with constructs for con-
tinuous dynamics. Theorem proving in dL consists of deter-
mining whether a formula is valid, i.e., true in all states
ν and interpretations I . States assign meaning to flexi-

ble/assignable symbols: program variables x and differential
symbols x′. Interpretations assign meaning to rigid symbols:
function symbols f , predicate symbols p, q, program sym-
bols a, b, predicational (a.k.a. quantifier) symbols C and
differential program symbols c.

Expressions (e) of dL are terms (θ), differential programs
(ODE), hybrid programs (α) and formulas (φ). In the fol-
lowing, V denotes the set of all variables. For any U ⊆ V

we write U ′ def
= {x′ : x ∈ U} for the set of differential

symbols x′ of variables x in U . Our Isabelle formalization
considers variables V and differential symbols V ′ disjoint as
in [38]. Our Coq formalization considers differential sym-
bols as variables, i.e. V ′ ⊆ V , as in [39], allowing higher
differential symbols, such as x′′.

Definition 1. Terms are defined by the grammar:

θ, η ::= x | x′ | r | f(θ1, . . . , θk) | θ + η | θ · η | (θ)′

where θ, η, θi are terms and r ∈ R real-valued literals. The
semantics Iν[[θ]] assigns a value r ∈ R to every term θ
in interpretation I and state ν. Like variables, differential
symbols x′ receive their values from the state ν and are
assignable. Differentials (θ)′ express how the values of ar-
bitrary terms change, but are not assignable.

All terms are locally Lipschitz continuous, which implies
that all ordinary differential equations (ODEs) have solu-
tions. This requires interpretations of function symbols f to
be locally Lipschitz continuous as well.

Definition 2. Systems of ODEs, expressed as Differential

Programs (ODEs), are defined by the following grammar,
where ODEi are differential programs and c is a differential
program constant symbol:

ODE ::= c | x′ = θ | ODE1,ODE2

The semantics of a differential program in a given interpreta-
tion is a state-dependent vector field of type RV → R

V′

that
defines the derivative of every variable in every state. Dif-
ferential program symbols c stand for arbitrary differential
programs. Singleton systems x′ = θ define the continuous
evolution of a single variable x. Systems of equations are
constructed as products ODE1,ODE2, which perform the
parallel composition of two differential programs.

Definition 3. Hybrid programs (HPs) are defined as:

α, β ::= a | x := θ | x′ := θ | ?ψ |ODE&ψ | α∪β | α;β | α∗

where α, β are HPs, and ψ a dL formula. The semantics of
a program in a given interpretation is a reachability relation
R ⊆ (RV∪V′

× R
V∪V′

) on states. Assignments x := θ and
differential assignment x′ := θ update the value of variable
x or differential symbol x′, respectively, to θ. Tests ?ψ suc-
ceed iff the formula ψ is true and do not affect the state. Dif-

ferential programs ODE&ψ follow the evolution of ODE
for any duration within the domain constraint ψ. Nondeter-

ministic choices α ∪ β behave as either α or β. Sequential

compositions α;β run β on the state produced by α. Non-

deterministic repetition α∗ runs α an arbitrary number of
times. Program constants a stand for arbitrary programs.

Definition 4. Formulas of dL are defined by the grammar
(with dL formulas φ, ψ, predicate symbol p, and predica-
tional symbol C):

φ, ψ ::= θ ≥ η | p(θ1, ..., θk) |C(φ) | ¬φ | φ∧ψ | ∃xφ | 〈α〉φ

The semantics of a formula in a given interpretation is
the set of states S ⊆ R

V∪V′

in which it is true. Oper-
ators >,≤, <,∨,→,↔, [α]φ, true, false, and ∀ are defin-
able, e.g., [α]φ as ¬〈α〉¬φ. The modal formulas [α]φ and
〈α〉φ express that φ holds after all or some runs of α, re-
spectively. Unary predicational symbols C (with formula φ
as argument) are higher-order predicates binding any vari-
ables and correspond to functions from formulas to formu-
las. Nullary predicational symbols P,Q are derivable by
specifying a φ of constant truth-value, i.e., C(true). Unary
predicational symbols are used for contextual congruence
reasoning, nullary ones used in axioms. The semantics of
dL is defined in [39, §2.2].

Example 1 (Uncontrolled Continuous Car Model). As a sim-
ple example, consider an uncontrolled continuous car [41,
§5.1]. The following dL formula says that if the acceleration
and velocity are initially nonnegative, the velocity will al-
ways be nonnegative when following a differential equation
where the derivative of position is velocity and the derivative
of velocity is acceleration:

A() ≥ 0 ∧ v ≥ 0→ [v′ = A(), x′ = v& true] v ≥ 0

2.2 Uniform Substitution Calculus

Several proof calculi are available for dL [36, 37, 39]. The
one implemented in KeYmaera X and discussed here is



a minimalistic Hilbert calculus based on uniform substitu-
tion [39], where most reasoning principles are expressed as
concrete axioms instantiated by substitution and combined
using a small number of standard Hilbert rules. It is from
this small number of rules that we gain simplicity of imple-
mentation and verification.2

A main source of complexity in practical proof calculi is
that most axioms and rule schemata are only sound given
certain side conditions. The uniform substitution rule con-
fronts these side conditions once and for all through its
(computables) notion of admissibility.

Theorem 1 ([39, Thm.26]). The following proof rule with

uniform substitution σ is sound:

(US)
φ

σ(φ)
if admissible(φ, σ)

Thus showing soundness of dL is reduced to: (1) show-
ing soundness of rule US, and (2) showing the validity of
each axiom or axiomatic rule. Because axioms in a uni-
form substitution calculus are but individual concrete for-
mulas, there is no need for side conditions: any subtleties
have been made explicit in the statement of the axiom. Simi-
larly, we have verified soundness of uniform substitutions on
proofs [39, Thm.27] to instantiate concrete representations
of proof rules.

2.3 Axiomatization

The axioms and axiomatic proof rules of dL [39, §4–5] im-
plement reasoning about programs, ODEs, differentiation of
terms, contextual equivalence, and modal and propositional
operators. Here, we focus on the differential axioms: DW,
DE, DC, DS, DI, and DG in Fig. 1, which implement the
ODE reasoning at the heart of dL.

Differential Weakening DW states that the evolution con-
straint of an ODE holds after the ODE. Differential Effect

DE states that differential symbols agree with the vector field
of an ODE at the end of the ODE. Differential Cut DC states
that a formula can be added to an evolution constraint if it al-
ways holds after the ODE. (Constant) Differential Solve DS
states that constant ODEs are uniquely solved by linear func-
tions. Differential Induction DI enables inductive reasoning
over the flow of an ODE. Differential Ghost DG states that
one can add equations to ODEs as long as they are linear,
implying they have solutions of the same duration.

2.4 Uniform Substitution

Church introduced a Uniform Substitution operation [12,
§35] (denoted Š) and proof rule [12, §40] in order to re-
place axiom schemata by a finite number of axioms. Differ-
ential dynamic logic adopted uniform substitution [39, §3],
because of its minimality.

2 For efficiency reasons, KeYmaera X also implements a propositional se-
quent calculus with Skolemization, which we have only partially formal-
ized.

DW [x′ = f(x)& q(x)]q(x)
DE [x′ = f(x)& q(x)]p(x, x′)↔

[x′ = f(x)& q(x)][x′ := f(x)]p(x, x′)
DC

(

[x′ = f(x)& q(x)]p(x)↔
[x′ = f(x)&q(x) ∧ r(x)]p(x)

)

← [x′ = f(x)& q(x)]r(x)
DS [x′ = f & q(x)]p(x)↔

∀t≥0
(

(∀0≤s≤t q(x+ fs))→ [x := x+ ft]p(x)
)

DI [x′ = f(x)& q(x)]p(x)←
(

q(x)→ p(x) ∧ [x′ = f(x)& q(x)](p(x))′
)

DG [x′ = f(x)& q(x)]p(x)↔
∃y [x′ = f(x), y′ = a(x)y + b(x)& q(x)]p(x)

[:=] [x := f ]p(x)↔ p(f)
K [a](P → Q)→ ([a]P → [a]Q)

Figure 1. Selected dL axioms

A substitution σ maps rigid symbols to concrete replace-
ments. The difficulty lies in identifying when it is sound to
perform a substitution. Consider the following application of
axiom [:=] from Fig. 1:

clash 
[x := f ]p(x)↔ p(f)

[x := 1]x = 1↔ x = 1

where the premiss is valid, but the conclusion false in every
state except x = 1. This invalid conclusion would be prov-
able from [:=] using the substitution σ = {f 7→ 1, p(·) 7→
x = 1} if we ignored admissibility. Admissibility defines
which uses of substitutions are sound, as verified by the
soundness theorems for US [39, Thm. 26–27]. Admissibility
is defined in terms of dL’s static semantics: signatures, free,
bound and must-bound variables [39, §2.4]. The signature
Σ(e) of an expression is the set of rigid symbols which can
influence its dynamics. The free variables FV(e) of an ex-
pression are all assignables (i.e., x and x′) which can influ-
ence its dynamic semantics. Bound variables BV(α)/must-
bound variables MBV(α) of a program are the assignables
that are modified by α on some/all paths.

For example, the signature of Example 1 is the singleton
set containingA, its free variables are x and v, and its bound
variables are x, x′, v, and v′.

We illustrate a high-level proof of Example 1 using gen-
eralizations of the axioms presented in Fig. 1 to systems of
ODEs. Using the US rule with σ = {f 7→ A(), q(·) 7→
true, p(·) 7→ · ≥ 0} on the DI axiom reduces the proof of
Example 1 to a proof of

[v′ = A(), x′ = v& true] (v)′ ≥ 0

We then use US on DE such that it remains to prove

[v′ = A(), x′ = v& true][v′ :=A()] (v)′ ≥ 0

Using US on Gödel’s G [39, Fig.2] it remains to prove

[v′ :=A()] (v)′ ≥ 0



Using US and x′ axiom [39, Fig.3] it remains to prove

[v′ :=A()] v′ ≥ 0

Finally, we conclude with US by σ = {f 7→ A(), p(·) 7→
· ≥ 0} on [:=], after renaming x to v′ and using A() ≥ 0.

3. Formalization: Fundamentals

The following sections describe our formalizations in detail.
An outline of the formalizations is given in Fig. 2 showing
the dependencies within the formalization. The final result
of the formalization is a soundness theorem for an embedded
dL proof checker. This depends on the soundness of axioms
and rules, which in turn depends on the semantics, which
depend on the syntax.

This section first explains the formalization of the syn-
tax and (denotational) dynamic semantics of dL [39, §2.1–
§2.2]. These definitions constitute the trusted specification
for our formalization: our results depend on the fact that we
have defined the semantics of dL correctly. We then define
the static semantics of dL [39, §2.4], which is proven cor-
rect with respect to the dynamic semantics through coinci-

dence [39, Lem.10-12] and bound effect [39, Lem.9] lem-
mas, which are the key building blocks for Theorem 1.

3.1 Syntax

Because the substitution theorem (Theorem 1) is fundamen-
tally syntactic and because our ultimate goal is a verified
prover core, both implementations use a deep embedding of
dL, i.e., syntactic expressions are represented explicitly as a
datatype in the formalization.

Isabelle To simplify the proofs, we define many connec-
tives as derived forms, then validate their definitions by
showing they have the expected dynamic semantics. For
convenience we define functions to take a fixed, arbitrary
number of arguments. Lower-arity functions are derived by
supplying constants for all other arguments. Expressions are
paramaterized by an arbitrary finite identifier space, so that
all vectors are finite-dimensional as needed by the analy-
sis libraries. As usual, we express this dependency on the
number of identifiers by encoding the natural number n as
a type ’a of typeclass finite containing n values. Substi-
tution will demand that the number of function symbols
(’nFun) and predicational symbols (’nPnl) change inde-
pendently from the numbers of all other identifiers (’n).
Thus we generalize, representing these numbers by the
type variables ’nFun::finite, ’nPnl::finite, and ’n::finite re-
spectively. Because terms and ODEs contain functions and
variables, they have two type arguments: (’nFun, ’n) trm
and (’nFun, ’n) ODE. Because formulas and hybrid pro-
grams also contain predicational symbols and variables,
they have three type arguments: (’nFun, ’nPnl, ’n) hp and
(’nFun, ’nPnl, ’n) formula.

Coq Our Coq formalization has an infinite number of iden-
tifiers. We also make selected use of dependent types. For
example, we encode function arguments using vectors (in
terms of the form f(θ1, . . . , θk)). Coq’s vector type is a de-
pendent type for a list of a given length. The advantage of
using vectors over plain lists is that when applying function
symbols to arguments there is no need to syntactically check
that the list’s length is equal to the function symbol’s arity.
One drawback is that some operations become cumbersome
as explained in [20].

3.2 Real Analysis

Because dL relies on significant results from real analysis,
our choice of analysis libraries has a significant impact ev-
erywhere throughout the formalization.

Our Isabelle formalization uses the standard libraries for
analysis, wherein the classical reals are implemented as
Cauchy sequences of the rationals. We use the multivari-
ate analysis library of Hölzl et al. [19] which uses Isabelle’s
typeclass mechanism to generalize prior results and uses a
notion of filters to elegantly describe the domain on which a
function is differentiable. Our treament of differential equa-
tions uses a library by Immler [22] which provides important
results about differential equations, most notably the Picard-
Lindelöf theorem for existence and uniqueness of solutions.

Our Coq implementation relies on Coquelicot [11], a
user-friendly library, which extends Coq’s standard real
analysis library with several widely used results, such as
the mean value theorem. For usability, Coquelicot separates
the act of defining a function from the act of showing that
desired properties such as differentiability are satisfied. This
is in contrast to the way the standard library is written where
such properties are encoded by the types of the functions.
It is similar to the treatment in Isabelle, where expressing
complex properties as types is difficult. Coq’s standard li-
brary provides an axiomatization of classical real numbers
described as a complete Archimedean field, but no concrete
implementation. This is unlike in other libraries such as the
CoRN library [26], which provides an implementation of
constructive reals as Cauchy sequences. The two libraries
are compatible with each other to some extent [24].

3.3 States and Differential Symbols

To define dL’s dynamic semantics, we first choose a repre-
sentation of states. Because all assignables are real-valued,
the only choice is in the number of assignables.

Isabelle Because all expressions have a finite number of
identifiers ’n, states are finite-dimensional as well. For each
identifier x, the state assigns a value to the variable x and its
associated differential symbol x′. The Isabelle formalization
prohibits higher differentials and symbols x′′ for the sake of
simplicity, because they can be implemented from first-order
differentials by introducing additional variables. We encode
states ’n state as pairs of vectors of reals. When we need



Components Results

Syntax 3.1
Dynamics 3.4-3.5

Statics 3.6
Substitution 5

Renaming 6

Axioms 4
Proof Checker
Soundness 7

Figure 2. Outline of Formalization

just the variables or just the differential symbols, it is called
’n half state.

Coq Unlike the Isabelle formalization, the Coq formaliza-
tion supports higher-order differentials x′′, x′′′, etc., since
differential symbols are variables as in [39]. We define the
Assign type as the type of both non-primed variables and
(higher-)differential symbols. The semantics of terms maps
states to reals where states map assignables to reals, i.e., we
define State as the function type Assign→ R, where R is the
type of reals.

3.4 Dynamic Semantics of Differential Terms

Differential term (θ)′ could be thought of as derivatives of
the term θ with respect to time. However, time is only mean-
ingful during a differential equation, not during a discrete
computation. Thus, the semantics of (θ)′ are defined instead
by its spatial derivatives with respect to all variables. The
differential substitution lemma [39, Lem. 35] then shows
that the spatial and temporal derivatives agree during the
evolution of a differential equation, because the differential
symbols x′ then agree with the time derivatives of each vari-
able x.

That is, a differential term (θ)′ is interpreted [39, §2.2]
as the sum of derivatives of the value of θ w.r.t. all variables
x ∈ V times the respective ν(x′) value:

Iν[[(θ)′]] =
∑

x∈V

ν(x′)
∂Iνrx[[θ]]

∂r
(ν(x))

where νrx denotes the state that agrees with state ν except for
the value of variable x, which is changed to r ∈ R. Unlike
the Isabelle formalization, the Coq formalization supports
higher differentials, so that V includes differential symbols.
The Coq definition sums over FV(θ), but this is equivalent
to summing over V because all other terms are 0.

Coq In order for Iν[[(θ)′]] to be well-defined, we proved by
induction on terms that the partial derivative ∂Iν

r

x
[[θ]]

∂r
exists.

To handle the differential case (θ)′, we proved that terms are
C∞ smooth, i.e., that the nth-partial derivative of Iν[[θ]]

∂ . . .
∂F (νr1

x1
···rn

xn

)

∂rn
(ν(xn))

∂r1
(ν(x1)) (1)

exists for all n, where F is the following real-valued func-
tion on states: λν.Iν[[(θ)′]]. In Coq, this nth-partial deriva-
tive translates as the following recursive function, which dif-

ferentiates F over the list of assignables l from left to right
(i.e., the list x1, . . . , xn in Equation 1):

Fixpoint partial derive
(F : state → R) (l : list Assign) : state → R :=

match l with

| [] ⇒ F

| x :: l ⇒
fun (st : state) ⇒

Derive
(fun r : R ⇒ partial derive F l (upd state st x r))
(st x)

end.

where [] is the empty list; :: is the cons operator; the state
(upd state st x r) is the modified state str

x; and Derive is
the Coquelicot abstraction that computes the derivative of
a real-valued function at a point. Coquelicot guarantees that
(Derive f x) computes the derivative of f at point x if the
derivative exists, i.e. if ex derive f x is true. If l is n copies
of an assignable y, then partial derive is simply an nth-
derivative:

partial derive f l s

= Derive n (fun r ⇒ f (upd state s y r)) (length l) (s y)

where (Derive n f n pt) is a Coquelicot abstraction that
computes the nth derivative of f at point pt.

Of course, in order to prove that the derivative in Equa-
tion 1 exists, we assumed that function symbols are C∞

smooth, i.e., their interpretations satisfy3:

Definition smooth fun {m : nat} (f : Vector R m → R) :=
∀ (Is : Vector (state → R) m) (a : Assign) (l : list Assign),

(∀ I w l’,
Vector.In I Is

→ sublist (w :: l’) (a :: l)
→ ex partial derive I w l’)

→ ex partial derive (fun s ⇒ f (map(revApp s)Is)) a l.

where (revApp a f ) is defined as f (a), and where

Definition ex partial derive (f : state → R) a l : Prop :=
∀ pt s,

ex derive (fun r ⇒ partial derive f l (upd state s a r)) pt.

states that f is differentiable over the list of assignables
a :: l. The smooth fun abstraction states that f is partially
differentiable over the list of assignables a :: l assuming
that its arguments, provided by the Is vector of real-valued
functions over states, are partially differentiable over sublists
of a :: l.

3 Coq automatically generates the implicit argument {m : nat} to the defi-
nition of smooth fun from the type of f .



Isabelle The Isabelle formalization builds on the pre-
exisiting formalization for a closely related notion of deriva-
tive: the Fréchet derivative. Given a function f : Rn → R

m,
the Fréchet derivative, f ′(x) : Rn → R

m, of f at a point
x : R

n is the linear function defined by the dot product
f ′(x)(x′) = x′ · ∇f(x) where ∇f(x) is the gradient. We
give a syntactic characterization:

frechet::"(’nFun, ’nPnl, ’n) interp

=⇒ (’nFun, ’n) trm

=⇒ ’n half state

=⇒ ’n half state

=⇒ real"

of the Fréchet derivative and prove that it matches the differ-
ential of a term (frechet correctness). Validity of the differ-
ential axioms [39, §5] follows easily. 4

The predicates dfree and dsafe identify differential-free
terms (which we call simple terms or sterms) and terms
allowing non-nested differentials (called differential terms

or dterms), respectively. Likewise osafe, fsafe, and hpsafe
characterize ODE systems, formulas and programs where
all subterms are dsafe. The semantics of a dterm depends
on the whole state, while sterms only depend on the vari-
ables. Hence, we define two semantic functions sterm sem
(which takes a ’n half state) and dterm sem (which takes a
’n state). The lemma dsem to ssem confirms that both agree
on sterms:

lemma dsem_to_ssem:
"dfree ϑ=⇒ dterm_sem I ϑ ν = sterm_sem I ϑ (fst ν)"

A side benefit of the distinction between sterm and dterm
is that we can safely add non-differentiable or even discon-
tinuous terms to the language. For example, if we so wished,
we could add support for conditionals and interpreted func-
tions such as min, max, and abs which are desired in practice
for complex proofs such as the airborne collision avoidance
system ACAS X [23].

Formalizing the derivative as the Fréchet derivative leads
to an equivalent semantics for differential terms:

definition directional_derivative ::
"(’sf , ’sc, ’cz) interp ⇒ (’sf , ’sz) trm ⇒ ’sz state ⇒ real"

where "directional_derivative I t =
(λv. frechet I t (fst v) (snd v))"

That is, the differential symbol state (snd v) provides co-
efficients to the gradient. Inside the evolution of an ODE,
these coefficients agree with the time-derivative of each vari-
able, thus the semantics of all terms agree with their time-
derivatives. During the discrete stages of a program, time is
meaningless, but all axioms over differentials hold because
the equalities captured in frechet hold in any (differential)
state.

Comparison Allowing higher differentials in the Coq for-
malization results in more complex arguments about deriva-

4 The chain rule is currently omitted due to time constraints and because it
is not needed in practice.

tives and the requirement that all functions are C∞ smooth.
Prohibiting higher differentials in the Isabelle implemen-
tation simplifies these arguments and relaxes the smooth-
ness requirement to C1, also opening the possibility of non-
smooth terms. However, this comes at the cost of more com-
plicated data structure invariants, which will complicate the
substitution proofs in Sec. 5. The use of Fréchet derivatives
in the Isabelle implementation aids in reuse of existing re-
sults, but will complicate the lemmas required in Sec. 4.3
for DG, and makes extensions to infinite-dimensional states
more difficult. By contrast, because the Coq implementation
explicitly defines that only free variables contribute to the
differential of a term, it is easier to show that differentials
exist in the presence of infinite states.

3.5 Dynamic Semantics of ODEs

We use the semantics5 of KeYmaera X for differential pro-
grams ODE where differential program symbols c receive
meaning from the interpretation I in analogy to program
constant symbols. We use an unconventional twist for the
semantics of differential products, though, that agrees with
the semantics of systems of ODEs [36].

Variables and differential symbols only change when
mentioned explicitly. For example, the dynamic semantics
of (x′ = θ, y′ = 0) and (x′ = θ) differ subtly: the first
changes y′ to 0, but the latter leaves it intact. This compli-
cates our formalizations, because the ODE libraries require
our formalization to distinguish variables that come from the
solution of an ODE from those kept from the initial state.
Differential program constants must reveal their bound vari-
ables as part of the interpretation.

Isabelle The semantics of a differential program is a vector
field assigning values to the differential symbols given the
state for the variables. In Isabelle’s vector notation, (χi. e)
introduces a vector indexed by i where the k’th element is
computed by substitution as [k/i]e. The constructors OVar,
OSing, and OProd represent differential program symbols
that vary over systems, singleton systems, and products of
systems, respectively.

fun ODE_sem:: "(’nFun, ’nPnl, ’n) interp
⇒ (’nFun, ’n) ODE

⇒ ’n half_state
⇒ ’n half_state"

where

"ODE_sem I (OVar x) = ODEs I x"
| "ODE_sem I (OSing x ϑ) =

(λν. (χ i. if i = x then sterm_sem I ϑ ν else 0))"
| "ODE_sem I (OProd ODE1 ODE2) =

(λν. ODE_sem I ODE1 ν + ODE_sem I ODE2 ν)"

This additive semantics for products is highly amenable to
verification, but defies intuition. It is brought into harmony
with intuition by the predicate osafe: in well-formed ODEs,
each variable is bound at most once, so adding the vector

5 Note: While KeYmaera X has recently improved its semantics to support
systems DG and DE, we leave this as future work.



fields of two systems componentwise coincides with parallel
composition.

Coq As in Def. 2 and our Isabelle formalization, in Coq
we defined a function dynamic semantics ode fun that in-
terprets ODEs as functions of type state→ state. This func-
tion is the Coq counterpart of the ODE_sem Isabelle func-
tion. Given this function we define dynamic semantics ode,
a predicate that states that the function phi from [0, r] to state
is a solution of the ODE ode, w.r.t. an interpretation I, as fol-
lows:

∀ (z : preal upto r), (x : Assign)
In x (ode assigns I ode)
→ (ex derive (fun t ⇒ phi t x) z

∧ phi z x’ = Derive (fun t ⇒ phi t x) z
∧ dynamic semantics term I (phi z) x’

= dynamic semantics ode fun I ode (phi z) x’)

where preal upto r is the type of positive real numbers
between 0 and r; and where (ode assigns I ode) is the set
of assignables bound in ode, where I provides the bound
assignables of ODE constants. The denotational semantics
of a program of the form ode&ψ is:

fun v w ⇒
∃ (r : preal) (phi : R → state),

equal states except v (phi 0) (ode footprint diff I ode)
∧ w = phi r

∧ dynamic semantics ode I ode r phi

∧ ∀ (z : preal upto r),
dynamic semantics formula I ψ (phi z)
∧ equal states except (phi 0) (phi z) (ode footprint I ode)

where v is the initial state of the program ode&ψ and w is its
final state. This formula states that (1) the initial state v has to
be equal to phi 0 on all assignables except on the differential
symbols bound in ode (extracted by ode footprint diff); (2)
the final state w has to be equal to phi r; (3) phi has to be a
solution of ode as stated by dynamic semantics ode; (4) ψ
has to satisfy the ODE at all points in time between 0 and
r; (5) and finally, assignables not bound in ode (i.e. not in
(ode footprint I ode)) do not evolve over time. Given an ode
ode, ode footprint extracts all the assignables of the form
x such that x′ = θ occurs in ode, while ode footprint diff
extracts all the assignables of the form x′ such that x′ = θ
occurs in ode.

3.6 Static Semantics

In this section, we verify the static semantics of dL [39,
§2.4]. We verify coincidence lemmas [39, Lem. 10-12]
showing that the dynamic semantics of expressions depend
only on their signatures and free variables, as well as the
bound effect lemma [39, Lem. 9] showing that only bound
variables can be affected by a program.

Because we wish to generate verified prover cores from
our formalizations, we must ensure that the free, bound and
must-bound variables of expressions are computable. The
nontrivial part is that differential terms (θ)′ and predica-
tional symbols C(φ) have all variables as free variables. In

the Isabelle formalization, this is easy because it supports
finite numbers of assignables. However, in Coq we support
infinitely many identifiers, so we must choose a finite rep-
resentation. As in KeYmaera X, the only infinite sets that
arise in the static semantics are cofinite, meaning their com-
plement is finite. Thus we have a finite representation of sets,
i.e., all sets in the static semantics are either finite or cofinite:

Inductive FCset {T : Type} : Type :=
| FCS finite (l : list T) : FCset

| FCS infinite (l : list T) : FCset.

where a set of the form FCS finite l is a finite set that only
contains the elements in l; and FCS infinite l is an infinite
set that does not contain the elements in l, i.e., it is the com-
plement of the set FCS finite l. If the type T has decidable
equality, then predicates such as membership, subset or dis-
joint become decidable. Interestingly, in order to prove one
property of the subset predicate (called ifset subset iff in
our formalization), in addition to having decidable equality,
we required the type T to come with a “fresh” operation that,
given a list l of elements of T, generates a fresh element that
is not in l. These are the only two operations we ever used to
develop our FCset library.

With this set representation, the proofs of coincidence and
bound effect mirror the structure of prior proofs [39], in both
the Coq and Isabelle formalizations.

Comparison The finite-dimensional state space of the Is-
abelle implementation provided the useful simplifying as-
sumption that all sets are finite, making all necessary oper-
ations easily computable. However, because formulas may
have a large number of variables, using standard finite set
data structures may not be desirable in practice. The infinite
state space of the Coq formalization forces us to confront
this issue head-on, developing and verifying a data struc-
ture analogous to the one used by KeYmaera X in practice,
further increasing confidence in the implementation of the
prover core.

4. Formal Verification of Differential

Dynamic Logic Axioms

Since uniform substitutions reduce soundness to validity of
the axioms, we formalize the proofs that dL’s axioms are
valid [39]. Except for DI, DS and DG, most axioms have
simple local proofs. DI uses the mean-value theorem. DS
and DG use the Picard-Lindelöf theorem.

4.1 DI: Differential Invariants

We have implemented differential invariants for atomic for-
mulas θ1 ≥ θ2 and θ1 > θ2 as the following DI axioms:

(Q → [x′ = h(x)&Q](f(x))′ ≥ (g(x))′)
→ (Q → f(x) ≥ g(x)) → [x′ = h(x)&Q]f(x) ≥ g(x)

(Q → [x′ = h(x)&Q](f(x))′ ≥ (g(x))′)
→ (Q → f(x) > g(x)) → [x′ = h(x)&Q]f(x) > g(x)



The other cases can be derived in dL [39]. For readability,
we only showed axioms for single ODEs. Generalizations to
ODE systems are straightforward. For example the DI axiom
that we have proved for atomic formulas of the form θ1 ≥ θ2
uses a differential program constant c that can be instantiated
to any system of ODEs:

(Q → [c&Q](f(x))′ ≥ (g(x))′)
→ (Q → f(x) ≥ g(x)) → [c&Q]f(x) ≥ g(x)

4.2 DS: Differential Solution

DS states that constant ODEs x′ = c are solved by the
function f(t) = x0 + t · c on the domain R and that this
solution is unique. Proving DS proceeds in these steps.

Isabelle For the uniqueness direction of DS, we assume
the existence of a solution sol on an closed interval [0, t] and
show that solution is equal to f(t) = x0+t ·c. In Isabelle we
show uniqueness of solutions with Picard-Lindelöf, which
says any locally Lipschitz ODE has a unique solution on
an open interval. We do so with an instance of the locale
ll_on_open named ll:

interpret ll : ll on open UNIV
"(λ . ODE sem I (OSing vid1 (f0 fid1)))" UNIV 0

This gives us the existence of a unique solution called flow.
We prove that the maximal existence interval for a constant
ODE is R with ll.existence_ivl_eq_domain and prove
that f(t) = x0 + t · c equals the unique solution of the ODE
with ll.equals_flowI.

Coq Because Coquelicot does not provide the Picard-
Lindelöf theorem, the Coq implementation proves unique-
ness directly. Since DS is for constant ODEs (other ODEs
combine axioms [39]), it suffices to show for any function g

that has a constant derivative c that:

∀ (c r : R) (g : R → R),
(0 ≤ r)
→ (∀ x : preal upto r, ex derive g x ∧ Derive g x = c)
→ g r = (g 0 + c * r).

This result can easily be proved by first turning the goal into
g r - g 0 = c * r, and then by integrating both sides over the
interval [0, r] and using the following simplified form of the
fundamental theorem of calculus (for constant derivatives
and a ≤ b):

(∀ x, a ≤ x ≤ b → ex derive g x ∧ Derive g x = c)
→ RInt (Derive g) a b = g b - g a.

4.3 DG: Differential Ghost

The axiom DG allows adding or removing an ODE y′ = θ
to another ODE if θ is linear in y (but not necessarily linear
in time). For example, we extend the ODE x′ = x2 to
(x′ = x2, y′ = x3 · y + 2 · y). We use the solution φx to
construct a time-dependent ODE for y: y(0) = y0, y

′(t) =
φx(t)

3 · y + 2 · y. Because this is still linear in y it has a
solution, even though it is not linear in t. Linearity ensures

the solution exists at least as long as the solution for the rest
of the system, which is needed for soundness. The proof is
by Picard-Lindelöf.

Isabelle The existence of unique solutions provides a
unique solution on the open maximal existence interval of
an ODE (see ll_on_open_it.flow_usolves_ode). We
need solutions on the compact interval [0, t]. Thus, our proof
first observes that when a solution exists on [0, t], then [0, t]
is a subset of the maximal existence interval. We then ob-
serve that the ODE for y′ has the same existence interval as
the ODE for x′ and thus [0, t] is a subset of that existence
interval. Thus we can restrict the solution for y′ to [0, t].

Applying ll_on_open_it.flow_usolves_ode requires
showing that the ODE for y′ is locally Lipschitz, which we
show by first showing it has a continuous derivative. Because
we use Fréchet derivatives, the derivative f ′(x) at a point x
is a (bounded linear) function. Continuity for derivatives is
defined using a metric space on bounded linear functions
with operator norm:

‖f‖ = sup
x 6=0

‖f(x)‖

‖x‖

This lets us prove a lemma continuous_blinfun_vec’

which allows us to show derivatives are continuous by show-
ing each component individually.

Coq For lack of a Picard-Lindelöf theorem in Coqueli-
cot, only the easy → direction of DG is proved in our
Coq formalization, i.e. that [x′ = f(x) & q(x)]p(x) implies
∃y [x′ = f(x), y′ = a(x)y + b(x) & q(x)]p(x).

5. Formally Verified Uniform Substitution

First- vs. Second-Order As presented in [39, Fig.1] (for
unary functions), to apply a uniform substitution σ to a
term of a form f(θ1, . . . , θn), one substitutes ·i by σ(θi)
in u, if σ maps f to u, i.e., σ(f(θ1, . . . , θn)) = {·1 7→
σ(θ1), . . . , ·n 7→ σ(θn)}(u). The reserved constant symbols
of the form ·i mark the positions where the arguments will
end up in u. For example, σ could map the ternary symbol f
to ·1 + ·2 + ·3. The dot terms are replaced with the concrete
arguments by a recursive call. While dot terms exist only
in the substitution data structure, they still appear in the ar-
guments to substitution. In order to simplify the termination
argument for substitution, we split the substitution algorithm
into two separate phases that we call first-order uniform sub-

stitution and second-order uniform substitution, borrowing
terminology from Nuprl [8, 13]. Second-order uniform sub-
stitution is equivalent to the substitution operation of [39].
However, when we substitute the arguments of a function
into the body, we call a separate first-order substitution in-
stead of making a recursive call to second-order substitution.
First-order substitution is only responsible for substituting
nullary symbols representing arguments. This greatly sim-
plifies the formal termination argument for both operations.



Error Monad vs. Separate Admissiblity Check Our Is-
abelle implementation separates the admissibility check
from the application of a uniform substitution to an expres-
sion. Uniform substitution is therefore implemented as a
recursive total function. The soundness theorem assumes
that admissibility holds, which is a decidable, inductively
defined predicate.

In Coq we combine both passes and use an option monad
to deal with the fact that uniform substitution fails if one
admissibility check fails.

The advantage of our Isabelle implementation is that uni-
form substitution is a total function, while the advantage of
our Coq implementation is that we only do one pass over ex-
pressions. Even though using a monad slightly complicates
our Coq definition of uniform substitution, because we are
only ever interested in the case when uniform substitution
succeeds, using the right tactics, we never have to explicitly
deal with the monad.

Adjoint Interpretation The substitution proof proceedes
by defining for each substitution σ, interpretation I and state
ν an adjoint interpretation [39, §3.1] that equivalently cap-
tures the effect of σ semantically. Since validity means truth
in every interpretation and state, validity of the substituted
formula follows from the validity of the original formula in
the adjoint interpretation [39, §3.2].

Coq Because the adjoint interpretation of a uniform sub-
stitution s needs to capture the effect of s on expressions, it
associates the following function with function symbol g of
arity n:

fun d : Vector R n ⇒
dynamic semantics term

(upd interpretation dots I d) v (lookup func s g n)

where (dynamic semantics term I v t) implements Iv[[t]];
(upd interpretation dots I d) agrees with I except for the
interpretation of the symbol ·i, which is changed to the ith

element of d; (lookup func s g n) returns u if s maps g to the
term u, and g(·0,. . . ,·n−1) otherwise. In Coq, for the adjoint
interpretation to be well-defined, we have to prove that the
above function satisfies the smooth fun predicate. We prove
this by induction on the term (lookup func s g n). To get a
strong enough induction hypothesis to prove the differential
term case, we prove instead the following by induction on
the term t:

smooth fun (fun d : Vector R m ⇒
partial derive (fun v ⇒ dynamic semantics term

(upd interpretation dots I m d) v t) l s).

for any natural number m, state s, assignable list l, and in-
terpretation I. Note that smooth fun differentiates over the
interpretation used to compute the semantics of t, while the
inner partial derive differentiates over the state. In the case
where t is a function symbol g, we only know that g is
smooth, i.e., it satisfies smooth fun. In order to apply our

smooth fun hypothesis we combine the two partial deriva-
tives mentioned above into one. We then uncombine the two
partial derivatives in order to apply the induction hypothesis.

In order to combine nested partial derivatives into a single
partial derivative, one has to carefully avoid variable name
clashes through renaming:

partial derive
(fun s1 ⇒ partial derive (fun s2 ⇒ F s1 s2) l2 s2)
l1

s1

= partial derive
(fun s ⇒ F (update state st s s1 l2’)

(update state st rebase s2 s l2’ l2))
(l1 ++ l2’)
(update state st rebase s1 s2 l2 l2’).

where l2’ is a fresh renaming of the list l2 that is disjoint
from l1; and uncombine them as follows:

partial derive
(fun s ⇒ F (update state st s s1 l2’)

(update state st rebase s2 s l2’ l2))
(sl1 ++ sl2’)
s

= partial derive
(fun s1 ⇒ partial derive

(fun s2 ⇒ F s1 s2)
sl2

(update state st rebase s2 s l2’ l2))
sl1

(update state st s s1 l2’)

where the state (update state st s1 s2 l) is defined as s2 on
assignables in l, and as s1 otherwise; and where the state (up-
date state st rebase s1 s2 l1 l2) returns (s2 (rename l2 l1 a))
on assignables a in l2, and is defined as s1 otherwise, where
(rename l2 l1 a) returns a if it does not occur in l2, and oth-
erwise returns the nth element of l1 if a is the nth element
of l2.

Symbols Because we explicitly represent the number of
(possible) function symbols in the type of a term, we can
express the fact that argument symbols are absent in the
result of first-order substitution through the type of the first-
order substitution functions. Consider the type for first-order
substitution on terms:

primrec TsubstFO::"(’nFun + ’b::finite, ’n) trm

⇒ (’b ⇒ (’nFun, ’n) trm) ⇒ (’nFun, ’n) trm"

That is, in (TsubstFO θ σ) the term θ distinguishes the
’nFun permanent symbols from the ’b temporary symbols
that stand for arguments. The substitution σ specifies a re-
placement for all ’b of the temporary symbols, and those re-
placements do not refer to any of the ’b symbols, after which
it returns a term that also does not refer to ’b symbols. When
second-order substitution calls first-order substitution on a
term θ, then θ always comes from the substitution σ and not
from the original input expression, thus we have the free-
dom to distinguish argument symbols from other function
symbols in types.



Safety Invariants Substitution requires showing that data
structure invariants are maintained. The result of substitution
is always safe according to the predicates dsafe, etc. These
properties follow easily by induction.

Substitution is perhaps where the less restrictive invari-
ants of the Coq formalization pay off most heavily: be-
cause substitution makes extensive changes to a formula, any
structural invariants also require extensive arguments that
they are maintained.

6. Renaming

Uniform renaming and bound renaming are the primary op-
erations that KeYmaera X implements that were not ad-
dressed in the theory [39]. Whereas uniform substitution
replaces a symbol with an arbitrary term, renaming renames
two variables to each other. This renaming operation is a
primitive operation of Nominal Logic [35] where it is re-
ferred to as swapping. We have proved that renaming pre-
serves the validity of formulas. Renaming is necessary when
applying an axiom that refers to a concrete variable name,
such as the assignment axiom [:=]. Bound renaming is a
small extension to uniform renaming that only renames
bound variables.

Uniform Renaming Uniform renaming swaps two vari-
ables x and y uniformly everywhere in an expression. The
correctness argument is analogous to that for substitution: to
show that substitution preserves validity, we constructed an
adjoint interpretation whose effect is equivalent to the sub-
stitution. Because variables receive meaning from the state,
we instead construct an adjoint state whose effect is equiv-
alent to swapping x and y (specifically, the state where x is
swapped with y and x′ is swapped with y′). We show by in-
duction that the result of renaming is true in a given state iff
the initial formula is true in the adjoint state, so by validity
of the initial formula, the renamed formula is valid.

Bound Renaming Given an assignment inside a modality
[x := θ]φ, bound renaming renames the destination variable
x, but differs from uniform renaming because it does not af-
fect the right-hand side θ, only the destination x and the for-
mula φ. The correctness proof of bound renaming consists
of applying uniform renaming to the formula φ and using
the coincidence theorem on formulas to show that the result
is true in the state reached after the assignment y := θ.

Verification Reveals a Bug The proof for bound renam-
ing exposed an exploitable soundness bug in the KeY-
maera X implementation. The correct admissibility criterion
for bound renaming of x and y in [x := θ]φ is

{y, y′, x′} ∩ FV(φ) = ∅

The need to include x′ in this condition is counter-intuitive,
which led to a prover bug where this variable was not
checked. However, once the bug is discovered, it is straight-
forward to construct an example where this bug leads to a

soundness violation, for example:

BRclash 
[x := x′]x = x′

[y := x′]y = y′

The premiss is valid, but the conclusion is not. Thankfully,
no existing code in KeYmaera X depended on the presence
of this bug, so changing the precondition as indicated above
was sufficient to fix the bug.

7. Applications

The immediate application of this work is the creation of
verified prover kernels for the theorem prover KeYmaera X.
While we leave a verified standalone kernel as future work,
our formalizations include verified proof checkers for dL
embedded in Coq and Isabelle which interpret dL proof
terms inspired by LPdL [16].

We evaluate the completeness of our proof checkers with
a few example proofs. For our first example, we implement
the ∧ case of DI in dL. The idea is to reduce [c&Q](P1 ∧
P2) equivalently to [c&Q]P1 ∧ [c&Q]P2 using [α](P ∧
Q) ↔ [α]P ∧ [α]Q, which is a consequence of the K
axiom, and then using DI separately on both conjuncts to
obtain [c&Q](P1)

′ ∧ [c&Q](P2)
′ as the remaining subgoal

provided that P1 ∧ P2 holds initially.
Our second example is a proof of Example 1 from p. 2.

Despite its simplicity, it demonstrates many reasoning tech-
niques for concrete systems. For example, the differential
equation is easily solvable in closed form, but the same
axioms enable checking properties of nonlinear ODEs that
have no closed form solution.

Our embedded proof checkers make initial steps at bridg-
ing the theory with KeYmaera X. KeYmaera X implements
an extension of the Uniform Substitution calculus [39] with
a propositional sequent calculus [36]. Its proofs do not op-
erate on formulas but on locally-sound derived rules (i.e. the
conclusion is valid in any interpretation in which the pre-
misses are). Thanks to uniform substitutions [39, Thm.27],
derived rules, as with axioms, can be represented concretely
as a conclusion C and list of premisses (SG1, . . . , SGn).

We implement and verify enough of the theory of sequent
calculus and derived rules to implement our examples, but
gaps remain. A systematic gap is that our formalizations do
not provide explicit support for arithmetic reasoning. Cur-
rently, support is limited to leaving arithmetic facts as open
goals or adding them as axioms and proving them in Coq
or Isabelle. In future work, we plan on using a witness-
producing real arithmetic solver and verified witness checker
based on semidefinite programming, which is competitive
with second-tier decision procedures for real arithmetic [40].
Furthermore, our DG axiom does not support systems and
the DE axiom is less flexible than in KeYmaera X. Imple-
menting them in full generality requires a modest extension
of differential program symbols.



8. Lessons Learned

The process of formalization has largely been one of discov-
ering nuances in what came before, rather than discovering
outright flaws.

It is perhaps remarkable that we found only one explicit
bug, and at the same time the location of that bug was telling.
Renaming was until now the only part of the KeYmaera X
core that was not justified by a proof, and it was the only part
in which we found a bug. While having an informal proof as
the foundation of the prover core did not give us the level of
assurance we desired, it clearly went a long way to improve
the robustness of the system in practice.

Our two formalizations confirm that both approaches to
higher differentials [38, 39] are viable options. The formal-
izations also confirm design decisions for simpler soundness
arguments. For example, differential invariants used to em-
ploy a meta-operator on formulas [37] that the uniform sub-
stitution approach abandoned to obtain a minimalistic basis
[39]. Our formalizations confirm that it is far easier for cor-
rectness arguments to decompose DI into separate axioms
for each case.

Both formalizations independently chose to separate first-
order and second-order substitution to remove the need for
custom well-founded orders, which are easier for humans
than for proof assistants. There is sometimes a tradeoff be-
tween the complexity of an algorithm and the complexity
of its correctness arguments. In our case both formalizations
chose a longer algorithm, thus requiring more proofs, each
of which was simpler.

9. Related Work

Verification of Theorem Provers Barras and Werner [7]
verified a typechecker for a fragment of Coq in Coq. Harri-
son [18] verified (1) a weaker version of HOL Light’s ker-
nel in HOL Light and (2) HOL Light in a stronger variant of
HOL Light. Myreen et al. have extended this work, verifying
HOL Light in HOL4 [28, 32] and using their verified com-
piler CakeML [27] to ensure these guarantees apply at the
machine-code level. Myreen and Davis proved the sound-
ness of the ACL2-like theorem prover Mitawa in HOL4 [31].
Anand, Bickford, and Rahli [5, 42] proved the relative con-
sistency of Nuprl’s type theory [3, 13] in Coq with the goal
of generating a verified prover core. We share a common
goal: formally verify that theorem provers are correct. How-
ever, the underlying theory of our prover greatly differs (dL
intimately deals with programs with differential equations),
leading to substantially different proofs (in our case, intricate
proofs about real analysis).

Verification of Hybrid Systems Hybrid systems verifica-
tion is an actively studied field. For example, SpaceEx [15]
is a model checker that provides an automated reachability
analysis for linear hybrid automata with a soundness-critical
core of about 100 000 LOC.

We focus on approaches that strive for a justification of
the verification technique itself. Immler [21] verifies a set-
based reachability analysis for ODEs in Isabelle using his
differential equations library [22]. His use of Isabelle makes
his analysis more trustworthy than SpaceEx, but it is cur-
rently less automated and, more fundamentally, lacks the
expressiveness and scalability of dL. Völker [44] defines
the semantics of hybrid automata in Isabelle, but no ver-
ification techniques. Ábrahám-Mumm et al. formalized in
PVS [2] an automaton-based approach similar to timed au-
tomata. They implement Floyd’s inductive assertion reason-
ing method. However, they only check invariants when tran-
sitioning between discrete states, as opposed to our differen-
tial invariants which hold continuously. Furthermore, they
only support continuous dynamics given as explicit solu-
tions. Thus they cannot reason by differential invariant, nor
can they express systems whose solutions only exist for fi-
nite time. StarL [30] is a framework for programming and
simulating Android applications that control robots. It uses a
formalization of timed automata and has a discrete model of
space in order to verify distributed applications. Anand and
Knepper [4] develop the framework ROSCoq based on the
Logic of Events for reasoning about distributed CPS in Coq
with constructive reals and generating verified controllers.
However, they provide limited support for reasoning about
derivatives, requiring extensive manual proofs by the user.
VeriDrone by Ricketts et al. [43] is a framework for veri-
fying hybrid systems in Coq that relies on a discrete-time
temporal logic called RTLA, inspired by TLA [29]. They
prove an analog of DI, but not the other ODE axioms. They
use a combination of a deep and shallow embedding, allow-
ing arbitrary Coq propositions to be embedded directly into
RTLA. Their embedding reuses Coq’s notion of substitution
instead of defining its own. An advantage of uniform sub-
stitution is its generality: we can introduce new variable de-
pendencies if they do not clash, which is necessary for most
proof steps. For example, the V axiom (p() → [a]p()) can
immediately be instantiated to x = 0 → [y′ = 1]x = 0
because BV(y′ = 1) ∩ FV(x = 0) = ∅, introducing depen-
dencies on x and y and y′. The permitted syntactic occur-
rence patterns for uniform substitutions are easily decidable,
thereby enabling automatic clash detection and sound gen-
eralizations of axiom shapes. That needs the syntactic expo-
sition of a deep embedding, though.

10. Conclusions

We have for the first time mechanized the metatheory for
the soundness of dL (Fig. 3 summarizes what has been done
so far). This mechanization is validated by some example
proofs, demonstrating how to recover convenient reasoning
over differential invariants, and how to use common tech-
niques to reason about concrete systems. This validation
shows that our formalizations put us well on our way to ver-
ified prover cores for dL that can be used in production to
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multiple argument functions ✗ ✗ ✓ ✓ ✓

infinite number of identifiers ✓ ✓ ✓ ✗ ✓

explicit set representation ✗ ✗ ✓ ✗ ✓

higher-order differentials ✗ ✓ ✗ ✗ ✓

uniform substitution definitions 1 1 1 2 2
uniform variable renaming ✗ ✗ ✓ ✓ ✓

bound variable renaming ✗ ✗ ✓ ✓ ✓

sequent calculus [36] ✓ (✓) (✓)
DG ✓ ✓ ✓ ✓ ✗

DG+DE for systems of ODEs [37] ✓ ✗ ✗

Figure 3. Comparison between various presenta-
tions/implementations of dL

increase the trustworthiness of proofs about hybrid systems.
Our choice to perform the formalization twice, largely in-
dependently, also offered a rare opportunity to discuss sub-
tleties that arose during formalization and how to address
them.

We cannot answer whether it is easier to get a prover core
correct by minimizing its size without the support of formal
proof (1 700 LOC of KeYmaera X) or by implementing it
inside another proof assistant with a larger core (8 913 LOC
of Isabelle’s core Isabelle/Pure, 16 538 LOC for Coq’s ker-
nel, and 6 720 for its standalone checker of compiled files),
because both rest on nontrivial stacks and our formaliza-
tions (14 614 total lines in Isabelle, 9 364/16 406 lines of
Coq specifications/proofs) and the libraries they depend on
need to be free of specification errors. Yet, without doubt,
the combination of a well-engineered prover core with multi-
ple formal soundness proofs in well-established, well-tested
proof assistants dominates either approach alone. This is
especially true because these formalizations increase confi-
dence in the correctness of the supporting theory, which can-
not be addressed by better engineering. Furthermore, these
formalizations open up the possibility of synergistic collab-
oration between KeYmaera X, Coq and Isabelle.
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