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Efficiency Analysis of Formally Verified Adaptive Cruise Controllers
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Abstract— We consider an adaptive cruise control system in
which control decisions are made based on position and velocity
information received from other vehicles via V2V wireless
communication. If the vehicles follow each other at a close
distance, they have better wireless reception but collisions may
occur when a follower car does not receive notice about the
decelerations of the leader car fast enough to react before it
is too late. If the vehicles are farther apart, they would have
a bigger safety margin, but the wireless communication drops
out more often, so that the follower car no longer receives
what the leader car is doing. In order to guarantee safety,
such a system must return control to the driver if it does
not receive an update from a nearby vehicle within some
timeout period. The value of this timeout parameter encodes a
tradeoff between the likelihood that an update is received and
the maximum safe acceleration. Combining formal verification
techniques for hybrid systems with a wireless communication
model, we analyze how the expected efficiency of a provably-
safe adaptive cruise control system is affected by the value of
this timeout.

I. INTRODUCTION

We present a class of adaptive cruise controllers that safely
set the acceleration of the controlled car based on vehicle
to vehicle (V2V) communication data from the car ahead.
In the design of such a controller, we can take advantage
of fast reaction times resulting from V2V communication,
allowing cars to drive close together and increasing highway
throughputs. However, a wireless transmission may not be
received because of interference, physical obstructions, or the
distance between the cars being too large. As a result, any
controller that depends on V2V communication must also be
able to request help from the driver when that communication
fails. If the distance between two cars is kept large, then
the car controller is more robust to such communication
errors because it has more space to maneuver safely, but
the probability that a transmission fails increases at larger
distances. Furthermore, the throughput of the highway is re-
duced. For small distances between two cars, communication
works more reliably, but there is less room for errors. At
close range, as soon as a single wireless message fails to
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be delivered, the follower car would already have to brake,
because slowing down is the only guaranteed safe action at
close distance when the car no longer has reliable position
and velocity data on the leader car. The same issues arise for
systems that ask for driver assistance instead of decelerating
automatically, as minimizing driver intervention is one goal
of such systems.

We use a symbolic class of adaptive cruise controllers to
investigate this tradeoff between efficiency and robustness to
communication failures quantitatively. This analysis requires
both a safety argument for the hybrid system cruise control
and an efficiency argument for a probabilistic communication
model. The control model for the physical dynamics of the
car is a hybrid system with discrete control decisions and
an analysis of their impact on the car’s continuous motion.
The communication model, instead, depends on the physical
relationships like distances, but has a probabilistic nature,
because communication attempts may succeed or fail at
random according to a corresponding distribution.

In Section IV, we introduce a control function which,
given the current position and velocity of the two cars,
chooses a new acceleration for the following car. We provide
a formal verification proof that our proposed control function
does not allow the following vehicle to collide with the
leader, under the assumption that if no message update is
received within a bounded limit, the driver assumes control of
the vehicle. In Section V, we prove that this control function
is optimal by showing that any larger choice of acceleration
may admit a collision, and would therefore be unsafe. We
then use this safe and optimal control function to analyze
how changing the time the controller waits before request-
ing human assistance affects the range of safe acceleration
choices. The methodology and results of this analysis are
presented in Section VI.

II. RELATED WORK

We would like our adaptive cruise control system to be
as efficient as possible, but it must also behave safely, even
in the unlikely event that a communication update is not
received for a prolonged period. In this paper we work within
the context of a controller for which safety has been verified
over the full continuous state space which results from all
possible discrete actions taken by the controller.

This is a stronger guarantee than what can be given
by verification methods that discretize the continuous state
space, such as the probabilistic model checker Prism [1].
Other methods for verifying hybrid systems, such as SpaceEx
[2], only verify linear hybrid systems, and therefore can not
handle the nonlinearities required for setting the maximal
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choice of acceleration as we do in this paper, and which is
necessary for analyzing efficiency of the timeout choice.

While the formal verification of adaptive cruise control
presented in [3] can and does handle nonlinear hybrid
systems, it uses an implicit choice of acceleration. This
means that the adaptive cruise control model presented for
two cars in [3] is less challenging to prove safe, but its
nondeterminisms make it difficult to implement and not
well suited for arguing about the efficiency of accelera-
tion choices. The assumptions in [3] also require that the
maximum time elapsed between transmission broadcasts be
bounded by a known constant. For wireless communication,
it is not possible to guarantee that any communication is
ever successful, so this assumption is infeasible. Instead, we
require the driver to take control of the vehicle anytime the
communication delay exceeds a given timeout T . We build
on the results presented in [3] to prove safety for a class
of controllers that use explicit assignments. We then analyze
this class of controllers to discover the optimal timeout T
for passing control of the vehicle back to the driver in case
of network failure. This analysis incorporates the probability
of successful reception associated with wireless packets sent
at varying distances.

Wireless communication between vehicles is a promis-
ing tool for improving highway safety. Hartenstein and
Laberteaux [4] give an overview of vehicular ad-hoc net-
works. Jiang et al. [5] propose a specific protocol for
safety-related wireless communications between vehicles.
The VSC-A report [6] describes an extensive series of exper-
iments testing the performance of wireless V2V communi-
cation in a variety of situations that are typically problematic
for autonomous vehicle safety systems. Sepulcre and Goza-
lvez [7] observe that achieving safety in different roadway
scenarios could impose very different specifications on the
underlying wireless communications system. Meireles et al.
[8] experimentally study the effects of physical obstructions,
including other vehicles, on packet delivery ratio and signal
strength in wireless V2V communication.

Much work has been done on modeling V2V networks.
The survey by Stanica, Chaput, and Beylot [9] provides a
good overview of current techniques. While modeling wire-
less networks is relatively well understood, V2V networks
pose a unique challenge because vehicles move quickly rel-
ative to each other and their environment. The Doppler effect
and effects due to the presence of cars, buildings, and other
structures could be significant. Dhoutaut et al. [10] propose
a simple model that switches between a small number of
predefined interference states. Moser et al. [11], on the other
hand, give a much more accurate model using raytracing that
relies on having a detailed model of the environment and
requires much greater computational resources to simulate.

In this paper, we will use the Nakagami fading model [12]
to compute the probability that an individual transmission is
passed successfully from one car to another as a function of
the distance between the two vehicles. We use this model for
simplicity. Another more complicated model could be more
accurate and our techniques would allow the use of such a

model in our efficiency analysis.

III. PRELIMINARIES: DIFFERENTIAL DYNAMIC LOGIC

Automated car control systems are hybrid systems, which
we model by hybrid programs (HPs) [13], [14], [15]. HPs
are defined by the grammar (α, β are HPs, θ a term, x a
variable, and H a formula of first-order logic):

α, β ::= x := θ | x′1 = θ1, ..., x
′
i = θi &H | x := ∗ | ?H

| α ∪ β | α;β | α∗

The effect of an assignment x := θ is an instantaneous
discrete jump assigning θ to x. The effect of differential
equation x′1 = θ1, ..., x

′
i = θi &H is a continuous evolution

where the differential equations x′i = θi hold and (written
& for clarity) formula H holds throughout the evolution
(the state remains in the region described by H). Here x′

is intended to denote the derivative of the interpretation of
the term x over time during continuous evolution. The effect
of the random assignment x := ∗ is to non-deterministically
pick an arbitrary real number as the value of x.

The effect of test ?H is a skip (i.e., no change) if
formula H is true in the current state and abort (block-
ing the system run by a failed assertion), otherwise. Non-
deterministic choice α ∪ β is for alternatives in the behavior
of the distributed hybrid system. In the sequential com-
position α;β, HP β starts after α finishes (β never starts
if α continues indefinitely). Non-deterministic repetition α∗

repeats α an arbitrary number of times ≥0.
For stating and proving properties of HPs, we use differ-

ential dynamic logic dL [13], [14], [15] with the grammar:

φ, ψ ::= θ1 = θ2 | θ1 ≥ θ2 | ¬φ | φ ∧ ψ | φ ∨ ψ
| φ→ ψ | [α]φ | 〈α〉φ

In addition to all formulas of first-order real arithmetic, dL
allows formulas of the form [α]φ with an HP α and a formula
φ. Formula [α]φ is true in a state ν iff φ is true in all states
that are reachable from ν by following the transitions of α;
see [14], [15] for details.

IV. VERIFIED ADAPTIVE CRUISE CONTROL

Hybrid systems have tightly coupled discrete and contin-
uous dynamics. As a result, the consequences of discrete
control choices on continuous system dynamics are usually
complex and difficult to analyze.

In this paper, we take as a canonical hybrid system
an adaptive cruise controller (ACC). The controller uses
discrete message updates via V2V about the car ahead to
inform discrete acceleration control decisions, which result
in continuous changes in position and velocity of the vehicle.

First, we present a similar motivating example as in [3],
shown in Figure 1. The leader car l brakes at time t1 with
its full braking power, -B. But there is a delay before the
follower receives a wireless communication update about
the behavior of car l, at which point the follow car applies
braking power −b. But the deceleration is too little and
too late, and a collision occurs. The choice of acceleration
must be accurate, even when it experiences delays between
communication updates from the car ahead.
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Fig. 1. The wrong choice of acceleration early on may result in an
unavoidable collision.

However, the controller cannot drive the car indefinitely
while waiting for updates about its environment. If no update
is received, it will timeout and request driver assistance.
In this system, the cars wirelessly broadcast their position
and velocity at a set frequency, but these broadcasts may
not be received. In our model of the controller, we define
this timeout by the symbolic parameter T . While other
parameters in the model are symbolic, many of them are
not flexible in a particular implementation of the system, for
example the upper and lower bounds on acceleration and
braking, which are defined by the physical limits of the car.
However, the timeout parameter T can be set arbitrarily in
software. It is crucial to the efficiency of the controller to
set T optimally, however finding the optimal value for T is
nontrivial, as we will discuss in greater detail in Section VI.

In Controller 1, we model two cars driving along a
straight road, where the lead car may choose its acceleration
arbitrarily (line 4), but the acceleration of the follow car is
chosen by an automated control system (line 5). We assume
that neither car may travel backward (line 10). The adaptive
cruise control system presented in Controller 1 is specified
in Differential Dynamic Logic (dL) [13], [14], [15]. The
controlled follow car f has state variables xf , vf and af
to represent its position, velocity and acceleration (similarly
for the leader car l). The continuous dynamics for f are
described by the differential equation system x′f = vf , v

′
f =

af (lines 8,9). The position and velocity of the vehicles
change continuously, however we don’t assume permanent

Controller 1 Verified Adaptive Cruise Control (ACC)

(xf ≤ xl ∧ v2f ≤ v2l + 2DB)→ [ACC](xf ≤ xl) (1)

ACC ≡ (ctrl; dyn)∗ (2)
ctrl ≡ `ctrl || fctrl; (3)
`ctrl ≡ (a` := ∗; ?(−B ≤ a` ≤ A)) (4)
fctrl ≡ af := af (vf , vl, D, T ) (5)
D ≡ xl − xf (6)

dyn ≡ (t := 0; t′ = 1, (7)
x′f = vf , v

′
f = af , (8)

x′` = v`, v
′
` = a` (9)

& vf ≥ 0 ∧ v` ≥ 0 ∧ t ≤ T ) (10)

a ≡
√
B2T 2 − 4BvfT + 8BD + 4v2l −BT − 2vf

2T
(11)

b ≡
−v2f

2(D +
v2
l

2B )
(12)

af (vf , vl, D, T ) :=



A if a ≥ A
0 if vf = 0 ∧ a ≤ 0

a if a ≥ −vfT ∧ −B ≤ a
b if a < −vf

T ∧ −B ≤ b
−B o.w.

(13)

control over the acceleration, since V2V message updates are
only available discretely. In this section, we assume that upon
receipt of a packet from the leader car with current values
of xl and vl, the controller for car f sets its acceleration and
maintains it until receiving a subsequent message from l.
This behavior is captured by the nondeterministic repetition
∗ in line 2. We assume a maximum acceleration for both
cars and denote it by A > 0. We also assume a maximum
braking power B > 0.

In order to automatically control a car, a computer must
have specific algorithms for setting acceleration and these
algorithms must be guaranteed to keep the two cars separated
under all circumstances. The complex interactions between
discrete and continuous components make even the simplest
control systems challenging to implement safely. The formu-
las required to calculate an appropriate acceleration in every
circumstance quickly become very complex.

Controller 1 presents a formula for setting the acceleration
of car f in lines 11-13. It is a function of the relative position
D and the velocities vf , vl of the two cars. It also relies on
the choice of the timeout parameter, T , which determines
how long the automated control will wait for an update
before requesting assistance from the human driver. In line



11, a is designed to be the greatest acceleration such that if
car l is braking maximally, and car f accelerates at rate a
for up to T time and then also brakes maximally, the two
cars will not collide. Note that a may be positive or negative.
In line 12, b is designed to be the least braking required to
bring f to a stop before the point where l would stop, if it
is applying maximum braking −B.

In line 13, we set the acceleration af to be a only if it
would not cause the car to stop before time T , otherwise b
is chosen. The choice of acceleration is also limited by the
physical bounds of the car, A and −B. Finally, if the car is
stopped, it may either accelerate or remain stopped, but it
can not be made to travel backward.

Using the theorem prover KeYmaera [16], we proved
the safety property in line 1, which states that while the
controller for car f chooses its acceleration based on the
formula in line (13), the cars will not collide. To prove
this property, we must assume car f is initially behind car
l and the state is initially in a controllable region, i.e. if
both cars were to immediately brake maximally, they could
avoid a collision. This property is expressed by the following
formula, which we prove is invariant for ACC (i.e. if it holds
initially, it continues to hold through all executions of ACC):

v2f ≤ v2` + 2DB (14)

This assumption can be seen as an antecedent in line 1. This
proof of safety requires 334 user interactions, has 661 nodes
and takes just 24.2 seconds to prove on a laptop computer.
The proof file may be downloaded online from http://
www.ls.cs.cmu.edu/pub/acc/.

V. OPTIMALITY

To prove that the function af in Controller 1 is optimal,
we show that if af were chosen to be af + ε for any ε > 0,
there could be a collision. Specifically, we show that in the
worst case where l is already braking maximally and car f
accelerates at rate af + ε for the maximum duration of T ,
then even when car f applies maximum braking at time T ,
it is not able to avoid a collision.

First, we remind the reader of some useful definitions
which can be derived in the standard way from kinematic
equations and by integrating the ODE in line 8 of Controller
1. Let xc[at] be the position of car c, after accelerating at
rate a for time t. Similarly, let vc[at] be the velocity of car
c after accelerating at rate a for time t.

xc[(a, t)] =
1

2
at2 + vct+ xc vc[(a, t)] = at+ vc

We let xc[(b, stop)] be the location where car c comes to a
stop after decelerating at rate b.

xc[(b, stop)] = x+
v2

−2b

From these familiar definitions we can compute the position
of car c after it has accelerated at rate a for time T and then
brakes maximally until it comes to a stop:

xc[(a, T ); (−B, stop)] = xf,a(T ) +
vf,a(T )2

2B
(15)

Case 1: af = a =

√
B2T 2−4BvfT+8BD+4v2

l−BT −2vf

2T

Through algebra and the assumption that af ≥ −vf/T
given in line (13) of Controller 1, we can show that
xf,af

(tstop) = xl,−B(tstop). So the system is safe in this
scenario for acceleration choice af . This is not surprising
since we derived a formal proof of safety for all scenarios
in Section IV. (Note that since we are assuming cars are
infinitesimal points, xf = xl is still considered safe, but
xf > xl violates our safety condition from line 1.)

However, when we choose to accelerate at rate af +ε, we
can derive the following:

xf [(af + ε, T ); (−B, stop)] (16)

=
1

2
(af + ε)T 2 + vfT + xf +

((af + ε)T + vf )2

2B
(17)

>
1

2
afT 2 + vfT + xf +

(afT + vf )2

2B
(18)

= xl + v2l /(2B) (19)
= xl[(−B, stop)] (20)

The formula in eq. (18) is equal to the formula in eq. (19)
by design through the definition of af . It can be easily
checked by substituting a for af . So, we have shown
the system is unsafe in this scenario for the acceleration
choice af + ε for any ε > 0. As a result, we know that
af is the maximal acceleration choice available for this case.

Case 2: af = b =
−v2

f

2(D+
v2
l

2B )

The proof of optimality for this case follows similarly to
that in Case 1, however it does not depend on T , as the
cars come to a stop before T . In Controller 1, b ≤ a, so in
this case af = b ≤ a < −vf/T ≤ 0. Therefore, from the
definition of af and the fact that af < 0, we get

xf +
v2f
−2af

= xl +
v2l
2B

.

As a result, there is an epsilon ε > 0 such that,

xf [(af + ε, stop)] = xf +
v2f

−2(af + ε)

> xl +
v2l
2B

= xl[(−B, stop)]

So the system is unsafe in this scenario, and af is the
maximum acceleration choice available for this case.

All other cases are trivial or extend Cases 1 and 2 trivially.

VI. EFFICIENCY ANALYSIS

Intuitively, we believe that if the follow car can expect
to get more frequent communication updates on the position
and velocity of the car ahead, it may follow more closely,
and therefore improve efficiency. This intuition is quantified
by the assignment of af in line 11 of Controller 1. When the
maximum time between updates, T , is small, the acceleration
can be set to a larger value, as demonstrated later in Fig. 3.
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Unfortunately, reducing T is not cost-free, since every
time the follow car does not receive a communications update
within T , human assistance is required. We want to reduce
the frequency of requests for driver intervention, so it might
make sense to set the timeout, T , to be large.

To study this tradeoff quantitatively, we will think of the
efficiency of the system as the ratio of the control space we
can access averaged over the state space. The ratio of the
control space that we can access at a single point in the
state space is the normalized acceleration āf :

āf (v`, vf , D, T ) =
af (v`, vf , D, T ) +B

A+B
.

Since we would like our system to work with little or no
required human intervention, we assign the same efficiency
value when the system returns control to the driver as we do
when it brakes maximally (both will be 0).

Based on our invariant from (14), we define the maximum
possible safe velocity of the follower sf (v`) as

sf (v`) = min{(v2` + 2DB)1/2, vmax}.

We can now calculate the efficiency Effaf
of the af

controller as a function of timeout T as follows:

Effaf
(T ) =

1

Z

Dmax∫
0

vmax∫
vmin

sf (v`)∫
vmin

āf dvfdv`dD.

where Dmax is the maximum distance at which the following
car can receive updates from the leading car and vmin and
vmax are the minimum and maximum permitted velocities.
In our computations, we take vmin to be 45 miles per
hour and vmax to be 75 miles per hour; this is a typical
range for highway driving speeds. We set Dmax to be 200
meters. We assume a uniform probability distribution for
the initial state over the state space. Z is the volume of
the state space, i.e., the integral of 1 over the same region.
Bounds on acceleration and braking will be determined by
the capabilities of specific vehicles, but in our analysis we
use A = 2, and B = 10.

Note that any choice of acceleration in [−B, af ] maintains
safety. We use āf to measure efficiency because it gives us
the ratio of the allowed interval of accelerations that we can
safely access at each point in the state space.

However, this is not the whole picture. We expect that we
will not be able to receive updates instantaneously, but will
instead receive them within some period of time with some
probability. The probability that we successfully receive a
given transmission will depend on the distance between the
vehicles. In their paper [12], Killat and Hartenstein give a
model for this reception probability in terms of distance D
based on the Nakagami fading model:

r(D,ψ) =

(
1 + 3

x2

ψ2
+

9

2

x4

ψ4

)
exp

(
−3

D2

ψ2

)
,

where ψ is the transmission power in meters. For simplicity,
we will set ψ = 100 for the rest of the paper. We will then
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Fig. 2. Reception probability as a function of distance.

let r(D) = r(D, 100). The resulting relationship between
distance and reception probability is shown in Fig. 2.

For concreteness, we assume that cars broadcast their
position and velocity at a frequency of 10 Hz. Our techniques
apply for other values, though 10 Hz is used in, e.g., [5], [7].
If the cars stay at a constant distance D, the probability that
we receive an update within T seconds is then

1− (1− r(D))b10T c.

This formula is not applicable, however, because the distance
does not stay constant when both cars move with different
velocities or different accelerations. To account for this, we
use the initial position, velocity, and acceleration of each
car to recalculate the distance between the cars each time
an update is sent (recall that xc[(a, t)] is the position of car
c after accelerating at rate a for time t, and that position,
velocity and acceleration appear in these terms). So, the
probability that we receive an update within T seconds is

p(T , D,a`, af , v`, vf ) =

1−
b10T c∏
i=1

(
1− r

(
xl[(al,

i

10
)]− xf [(af ,

i

10
)]

))
.

We take the acceleration of the follow car to be the value af
returned by the af controller. The acceleration of the lead
car is not known, so we instead take the average reception
probability over all choices of acceleration for the lead car
(the formula is easily modified to assume constant velocity,
or any probability distribution over acceleration choices):

p̄(T , D, af , v`, vf ) =
1

A+B

A∫
−B

p(T , D, a`, af , v`, vf ) da`.

Now we can define the quantity Effrec(T ), which captures
the average likelihood over the state space that we receive
an update within timeout T , as follows:

Effrec(T ) =
1

Z

Dmax∫
0

vmax∫
vmin

sf (v`)∫
vmin

p̄ dvfdv`dD.
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Combining the reception probability and the acceleration,
we can calculate the expected efficiency of the whole system:

Eff(T ) =
1

Z

Dmax∫
0

vmax∫
vmin

sf (v`)∫
vmin

āf p̄ dvfdv`dD.

We show the three functions Effaf
, Effrec, and Eff in Fig. 3.

Effaf
decreases as T decreases, since a longer timeout forces

the controller to make more conservative decisions. Effrec
initially increases with T , as the probability we successfully
receive an update increases for a longer timeout. At higher
values of T , the following car may not receive an update
from the leading car for a longer period of time. Even though
we do not know the behavior of the leading car, the controller
must take into account the possibility that the leading car has
been continuously applying maximum braking since the last
update was received. To ensure safety, the following car must
then choose lower acceleration values. However, in much
of the state space, the leading car is not actually braking,
meaning that the distance to the leading car is increasing in
much of the state space. This causes the reception probability
to decrease slightly. Eff starts low because we are less likely
to receive an update in a short amount of time, then increases
because we are more likely to receive updates, and then
decreases because the longer timeout forces the controller to
make more conservative decisions. It achieves a maximum
value of 0.709 at a timeout T = 3.2 seconds.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we present a symbolic controller for auto-
mated car control on a straight road. We identify its safe
region and formally verify that it prevents collisions. This
strong formal guarantee is needed to ensure the safety-
critical functioning of the system. We then investigate a
particular instance of the controller with exact values for
parameters such as update frequency, signal strength and
maximum braking and acceleration. We find the timeout
value for communication updates that maximizes the range of

safe accelerations over the state space. Although we stepped
through the analysis using a relatively simple model of
wireless communication, our method is general enough that
it could be applied using a more complex communication
model tailored to the system being analyzed.

Since the probability of receiving a message from the car
ahead depends heavily on the distance between the two cars,
another reasonable controller might be one which adjusts
the timeout as a function of the distance between the two
vehicles. This could be interesting future work, and due to the
generality of our analysis techniques, the primary challenge
will be in the verification step. We may also be able to
allow a closer following distance if we incorporate more
realistic probability distributions over the state space, rather
than uniform distribution. Future work could also incorporate
more cars on the road, increasing the difficulty of the formal
proof of safety and necessitating a more complex model of
the communication network to represent the large number of
collisions of broadcast packets.

REFERENCES

[1] Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification
of probabilistic real-time systems. In Gopalakrishnan, G., Qadeer, S.,
eds.: CAV. Volume 6806 of LNCS., Springer (2011) 585–591

[2] Frehse, G., Guernic, C.L., Donz, A., Cotton, S., Ray, R., Lebeltel,
O., Ripado, R., Girard, A., Dang, T., Maler, O.: Spaceex: Scalable
verification of hybrid systems. In Gopalakrishnan, G., Qadeer, S.,
eds.: CAV. (2011) 379–395

[3] Loos, S.M., Platzer, A., Nistor, L.: Adaptive cruise control: Hybrid,
distributed, and now formally verified. In Butler, M., Schulte, W.,
eds.: FM. LNCS, Springer (2011)

[4] Hartenstein, H., Laberteaux, K.: A tutorial survey on vehicular ad hoc
networks. Communications Magazine, IEEE 46(6) (2008) 164–171

[5] Jiang, D., Taliwal, V., Meier, A., Holfelder, W., Herrtwich, R.: Design
of 5.9 GHz DSRC-based vehicular safety communication. Wireless
Communications, IEEE 13(5) (2006) 36–43

[6] Ahmed-Zaid, F., Bai, F., Bai, S., Basnayake, C., Bellur, B., Brovold,
S., Brown, G., Caminiti, L., Cunningham, D., Elzein, H., et al.: Vehicle
safety communications–applications (VSC-A) final report: Appendix
volume 1 system design and objective test. Technical report (2011)

[7] Sepulcre, M., Gozalvez, J.: On the importance of application re-
quirements in cooperative vehicular communications. In: Wireless
On-Demand Network Systems and Services (WONS). (2011) 124–
131

[8] Meireles, R., Boban, M., Steenkiste, P., Tonguz, O., Barros, J.: Ex-
perimental study on the impact of vehicular obstructions in VANETs.
In: Vehicular Networking Conference (VNC), IEEE. (2010) 338–345

[9] Stanica, R., Chaput, E., Beylot, A.L.: Simulation of vehicular ad-
hoc networks: Challenges, review of tools and recommendations.
Computer Networks 55(14) (2011) 3179 – 3188

[10] Dhoutaut, D., Régis, A., Spies, F.: Impact of radio propagation models
in vehicular ad hoc networks simulations. In: Proceedings of the 3rd
international workshop on Vehicular ad hoc networks. VANET ’06,
New York, NY, USA, ACM (2006) 40–49

[11] Moser, S., Kargl, F., Keller, A.: Interactive realistic simulation of
wireless networks. In: Interactive Ray Tracing, 2007. RT ’07. IEEE
Symposium on. (2007) 161 –166

[12] Killat, M., Hartenstein, H.: An empirical model for probability of
packet reception in vehicular ad hoc networks. EURASIP Journal on
Wireless Communications and Networking 2009(1) (2009) 721301

[13] Platzer, A.: Differential dynamic logic for hybrid systems. J. Autom.
Reas. 41(2) (2008) 143–189

[14] Platzer, A.: Logical Analysis of Hybrid Systems: Proving Theorems
for Complex Dynamics. Springer, Heidelberg (2010)

[15] Platzer, A.: Logics of dynamical systems. In: LICS, IEEE (2012)
13–24

[16] Platzer, A., Quesel, J.D.: KeYmaera: A hybrid theorem prover for
hybrid systems. In Armando, A., Baumgartner, P., Dowek, G., eds.:
IJCAR. Volume 5195 of LNCS., Springer (2008) 171–178


	Introduction
	Related Work
	Preliminaries: Differential Dynamic Logic
	Verified Adaptive Cruise Control
	Optimality
	Efficiency Analysis
	Conclusions and Future Work
	References

