
Recitation 7: More on Ghosts
15-424/15-624/15-824 Logical Foundations of Cyber-Physical Systems

Notes by Brandon Bohrer/Yong Kiam Tan.
Edits by Katherine Cordwell (kcordwel@cs.cmu.edu)

1 Motivation and Learning Objectives

The main goal of this recitation is for you to get comfortable with differential ghosts. Ad-
ditionally, will explore differential equations in a couple of different settings: drag on a
parachuter, and boxes sliding down slopes. So we will gain some practice with modeling
systems as well as with doing proofs with differential ghosts.

2 Intro to Ghosts

Remember that we’ve divided our differential equations axioms into two classes: ones where
we can syntactically get information about ODEs, and ones where the user must provide
insight. Differential ghosts fall into this second category. You, as a user, will be adding a
variable to your hybrid program.

There are two kinds of ghosts: discrete and differential. Let’s review the relevant axiom-
s/proof rules.

(iG)
Γ ` [y := e]p,∆

Γ ` p,∆
(y fresh)

(DG) [{x′ = f(x) &Q}]P ↔ ∃y[{x′ = f(x), y′ = a(x) · y + b(x) &Q}]P (y fresh)

(dG)
Γ ` ∃y[{x′ = f(x), y′ = a(x) · y + b(x) &Q}]P,∆

Γ ` [{x′ = f(x) &Q}]P,∆
(y fresh)

The discrete ghost proof rule (iG) is often used to remember some initial state for ODEs
(it’s used, for example, in the implementation of the solve axiom in KeYmaera X). The
differential ghosts axiom (DG) and proof rule (dG) are often used when differential invariants
fail. This can happen if the property that you are trying to prove is getting less true over
time and thus is not inductive (think loss or decay or something like that).

There’s a lot going on in the proof rule (dG). In particular, what’s up with the linearity
restriction? To understand, let’s go back to an example from lecture and consider the ODEs
{x′ = 1, y′ = 1 + y2}.

Exercise 1:
What’s the solution?
Answer: x = t, y = tan(t)

We can check this by computing: y′ = d
dt

tan(t) = sec2(t) = 1 + tan2(t) = 1 + y2.

1



Now, say we were to prove x = 0 ` [x′ = 1]x ≤ 6 and say that we decide to use y′ = 1+y2

as our ghost.

...
x = 0, y = 0 ` [x′ = 1, y′ = y2 + 1]x ≤ 6

∃R
x = 0 ` ∃y[x′ = 1, y′ = y2 + 1]x ≤ 6

bad dG
x = 0 ` [x′ = 1]x ≤ 6

Here, we’ve forgotten about the linearity restriction in the bad dG step. Forgetting
about the linearity restriction gives us a problem, because the solution to tan(t) blows up
before π

2
. So x = 0, y = 0 ` [x′ = 1, y′ = y2 + 1]x ≤ 6 is actually valid, because the dynamics

x′ = 1, y′ = y2 + 1 ensure that time can never evolve past π
2
.

However, x = 0 ` [x′ = 1]x ≤ 6 is clearly not valid, because if we start in a state where
x = 0 and evolve until t = 7, for example, we’ll end with x = 7 and 7 > 6. So forgetting
about the linearity restriction is unsound. In fact, KeYmaera X may refuse to work if you
try to use any ghost that doesn’t look linear in shape, even if it is actually linear (so put
your ghosts into an explicitly linear format for a smooth proving experience).

Sometimes it’s useful to take (dG) and build in a cut, M [·] step to get a variation:

(dA)
P ` ∃yR R ` [{x′ = f(x), y′ = a(x) · y + b(x) & Q}]R

P ` [{x′ = f(x) &Q}]P
Some intuition: Rewriting our invariant can make differential invariants proofs easier. So

we hope that by changing P to R, we’ve set ourselves up well for dI. And the new variable
y is under an ∃ because we want the freedom to choose a convenient starting value for y.
Then we don’t know how long the ODE will run for, so we need to be able to get back to P
from R no matter what value y ended up with.

(dA) is helpful because it gives us a slightly more structured proof flow. But it also leaves
us with some questions: How can we choose R? How can we choose the ghost ODE?

The first choice depends on P . But we can make some guesses based on the shape of P .
For example, p > 0↔ ∃y py2 > 0 is provable, and we can use this to get a special instance
of dA:

(dA>)
py2 > 0 ` [{x′ = f(x), y′ = a(x) · y + b(x) & Q}]py2 > 0

p > 0 ` [{x′ = f(x) &Q}]p > 0
Here, we’ve already taken out the left premise since it’s provable in real arithmetic (in

general, if you apply (dA), do not remove this premise–unless you are using a special rule
that we have provided, like (dA>)).

Exercise 2:
What is this omitted premise, and why is it valid?
Answer: The omitted premise is p > 0 ↔ ∃y py2 > 0. It is valid because it’s true in all
states: if p ≤ 0, then there does not exist such a y, so both p > 0 and ∃y py2 > 0 are false.
If instead p > 0, then taking y = 1, we have py2 > 0, so both p > 0 and ∃y py2 > 0 are true.

2



So, we can use the shape of P to guide our choice of R—this makes progress on our first
question. What about our second question? When we’re trying to figure out the ghost ODE,
that’s a little more involved. It’ll usually depend on the actual ODE/invariant we have.

3 Examples

Let’s do some small examples before we dive into more involved modeling examples.

3.1 Discrete Ghosts Example

First, a discrete ghosts example.

1© 2©
dC

t = 0, k = 1, k0 = 1 ` [{k′ = 2, t′ = 1&t ≥ 0}]k ≥ 1
[:=]=

t = 0, k = 1 ` [k0 := 1][{k′ = 2, t′ = 1&t ≥ 0}]k ≥ 1
iG

t = 0, k = 1 ` [{k′ = 2, t′ = 1&t ≥ 0}]k ≥ 1

Let’s start with branch 1©. Abbreviate t = 0, k = 1, k0 = 1 by Γ.

*R
Γ ` k = k0 + 2t

*
id

t ≥ 0 ` 2 = 2
[′:=]

t ≥ 0 ` [k′ := 2][t′ := 1]k′ = 2t′
dI

Γ, k = k0 + 2t ` [{k′ = 2, t′ = 1&t ≥ 0}]k = k0 + 2t
cut

Γ ` [{k′ = 2, t′ = 1&t ≥ 0}]k = k0 + 2t

Now, let’s close branch 2©:

*R
k0 = 1, t ≥ 0, k = k0 + 2t ` k ≥ 1

dW
t = 0, k = 1, k0 = 1 ` [{k′ = 2, t′ = 1&t ≥ 0 ∧ k = k0 + 2t}]k ≥ 1

Here, the key is that the assumption k0 = 1 is constant and can be safely kept around
in the premises after we apply diff weaken, even though k = 1 disappears (since it is not
constant).
Note: Since it is often very useful to be able to mention the initial values of
variables when working with dC/dI, KeYmaera X provides the special keyword
“old(·)” which you can use to refer to the initial values of variables before an
ODE when using a differential cut.

3



3.2 Differential Ghosts Examples

These examples are taken from exercises in the textbook. They are meant to illustrate a
general technique for figuring out an appropriate ghost ODE.

Let’s say we want to prove x5 > 0 ` [x′ = −2x]x5 > 0 is valid. Since x is decreasing
along the ODE, this property is getting less true over time, which makes us think to use
differential ghosts. Further, the shape x5 > 0 suggests that we use (dA>). What we don’t
know is what our ghost ODE should be. But that’s okay!! Let’s start our proof anyways
and see if we can fill in the ghost ODE later.

∗
R ` 2x5y(??)− 10x5y2 ≥ 0
R ` 2x5y(??) + 5x4(−2x)y2 ≥ 0

` [x′ := −2x][y′ := 5y]2x5yy′ + 5x4x′y2 ≥ 0
dI x5y2 > 0 ` [{x′ = −2x, y′ =??}]x5y2 > 0

dA> x5 > 0 ` [{x′ = −2x}]x5 > 0

Here, our task is to find an assignment for ?? that is linear in y to close the proof. It
works to choose ?? to be 5y. Now we can go back and fill in our prooftree:

∗
R ` 10x5y2 − 10x5y2 ≥ 0
R ` 2x5y(5y) + 5x4(−2x)y2 ≥ 0

` [x′ := −2x][y′ := 5y]2x5yy′ + 5x4x′y2 ≥ 0
dI x5y2 > 0 ` [{x′ = −2x, y′ = 5y}]x5y2 > 0

dA> x5 > 0 ` [{x′ = −2x}]x5 > 0

Let’s try another example. Here we want to prove x < 0 ` [{x′ = −x}]x < 0. This is
trickier because we first have to choose what new invariant to replace x < 0 with. Well, let’s
see... What if we try something similar to (dA>), but changed to account for the <? We
can do that! Notice that x < 0↔ ∃y xy2 < 0 is valid.

Exercise 3:
Convince yourself that this is indeed valid.
Note: It’s easy to use dA wrong. Take great care to ensure that your new
invariant is a sound replacement.

As before, let’s start our ghosts proof and fill in our ODE later.

∗
R ` x < 0↔ ∃y xy2 < 0

∗
R ` −xy2 + 2xy(??) ≤ 0

` [x′ := −x][y′ :=??]x′y2 + 2xyy′ ≤ 0
dIxy2 < 0 ` [{x′ = −x, y′ =??}]xy2 < 0

dA> x < 0 ` [{x′ = −x}]x < 0

Our task is to find a replacement for ?? that is linear in y and closes the proof. We could
choose ?? = 1

2
y. This choice is not unique. We could also choose, for example, 1

2
y − xy

(why?).

4



4 James Bond the Parachuter

Now that we have some practice with differential ghosts proofs, let’s try modeling something.
Consider an object in freefall with drag, such as James Bond performing a high-altitude-
low-opening (HALO) jump in Tomorrow Never Dies1.

To model this problem, let’s start with the drag equation from physics:

D =
1

2
CD · ρ · v2 · A

where ρ is the density of air, CD is an experimentally determined coefficient of drag, v is
velocity and A is the surface area on which the drag force is exerted.

Any time physics gives us equations, we should look for a way to simplify them. Let’s
say we’re just interested in how Bond moves after his parachute is open since that seems like
an interesting case. If his parachute is open the surface area A is basically constant. What
about air density? That will change throughout a skydive because the density at 30,000 feet
is much different from that on the ground, but remember this is specifically a low opening
jump, so we won’t even have the parachute open until we’re pretty close to the ground,
say 1000ft if Bond is feeling lucky, which he is. So constant density is also a pretty good
approximation! And since CD is an experimentally-determined constant, we might as well
roll all the constants together:

c ≡ 1

2
CD · A · ρ

And we can just express the entire rest of model in terms of that one constant, giving us a
very simple equation for drag force now:

FD ≡ c · v2

where the constant c is positive.
What other forces should we look at? Well, Bond probably doesn’t have much lift, nor

much thrust, so let’s just look at gravity, which we will model as usual. Now we have a
complete ODE to describe Bond’s motion:

α ≡ {x′ = v, v′ = c · v2 − g}

What does the evolution of this ODE look like? Initially when he opens his parachute,
the drag will make him slow down. But then as v2 decreases, the drag will get less and less
until eventually it is effectively cancelled out by gravity and he stops accelerating.

Here’s a fun question to try and solve: What is the velocity where Bond stops slowing
down? This is a practical question, too: It gives us a lower bound on his landing velocity. If
his parachute were too small, this would allow us to formally prove that having too small a
parachute results in having too high of an impact velocity, which would lead to near-certain
death. We don’t like high impact velocities.

1Brandon is very creative with his examples. We were admittedly less creative in recitation. Fortunately,
this section is mostly his writing, so you’re in for a treat!

5



To solve for this “limiting velocity”, set the acceleration to 0 and solve:

v′ = 0 implies c · v2 − g = 0 implies v = ±
√
g

c

Now, we would only actually reach that exact velocity after infinity time; rather we have√
g
c

as a lower bound on speed and more specifically −
√

g
c

as an upper bound on velocity
because we know we’re falling. Let’s try to prove this upper bound by DI (note that it’s
reasonable to put the velocity in the preconditions because we assume we’re already falling
quite fast when the parachute opens). We can also assume that we have all the necessary
assumptions on g, c, etc. in Γconst.

Γconst, v < −
√
g

c
` [α]v < −

√
g

c

Remember that
√

g
c

is just a constant, so DI will ask us to prove v′ ≤ 0. DI wants us
to say the inequality is either stable over time, or is getting more true over time. But wait!
It doesn’t get more true! It gets more false! It just gets less more false over time, and so it
never gets all the way to being actually false! To put that less cryptically, v keeps stepping
closer and closer to

√
g
c

but the steps keep getting smaller so it never actually gets there.
What are we gonna do? Conceptually, the problem here is that some of our velocity

“vanished into the ether”. Any proof that explains why −
√

g
c

is an invariant is going to
have to talk about all the velocity that we lost due to drag, and explain why that velocity
isn’t too much. But we don’t have a variable to tell us how much velocity we lost from
drag, so not only will v < −

√
g
c

fail as an invariant, but any invariant we write with the
available variables will also fail. because we need to reason about the lost velocity,
we can’t prove this until we have a variable for lost velocity. BUT WE’RE IN
LUCK! DIFFERENTIAL GHOSTS ALLOW US TO ADD VARIABLES. LET’S USE THE
(dA) PROOF RULE!

As an aside, here’s some intuition for why we like differential ghosts and how we
can use them:

• If you can’t prove your differential invariant with the variables you have
right now, you can invent a new variable to account for “the stuff that
went away”

• When you invent a variable, you’ll want and need to say how it changes
over time

• When you invent a variable, you’ll also want to rewrite the invariant so
it uses your new variable. You probably want this rewriting to make a
subsequent differential invariants proof feasible/easier.

Let’s start by rewriting this ODE in the simplest way possible, and we’ll see why that’s
no good either. We said intuitively the new variable should be “velocity we lost”, so we can

6



make it exactly that, by making g(x, y) ≡ g − c · v2. Since the new variable stands for “lost
velocity” let’s call it L.

α2 ≡ {x′ = v, v′ = c · v2 − g, L′ = −c · v2 + g}

And then we will rewrite the postcondition v ≤ −
√

g
c

as

∃L.v = v0 + L ∧ L ≥ 0 ∧ L ≤ −
√
g

c
− v0

Where v refers to the current velocity and v0 the initial velocity (if we wanted to introduce
the variable v0 during the middle of proof, we could do so using a discrete ghost, which is a
story for a different day). What this says is the amount of velocity we lost is small enough
that it never makes us go past the terminal velocity and also the velocity is always equal
to initial velocity minus the loss. This should be equivalent to our initial postcondition,
but there’s a problem. This is actually pretty hard to prove by DI. In fact the invariant
L ≤ −

√
g
c
−v0 is essential if we want to prove the original procondition, but this has exactly

the same issue we had trying to prove the original precondition by DI: The invariant gets
less and less true over time even though it never gets false.

Well what was the point of doing all this nonsense? Did we just waste a bunch of time
learning a proof technique that didn’t help? No! Even if two formulas are semantically
equivalent, differential invariants might solve one of them completely automatically and get
totally stuck on the other one. The dI rule exploits the differential structure of a formula,
which comes from its syntax, not its semantics. So even though we added a totally new
variable, we still don’t have the right differential structure. In general, guessing the right
differential structure can be hard, but remember that we sometimes have special cases of
the dA proof rule that work well for simple formulas. Specifically, here’s a formulation of
differential assignment that works for formulas of the form e < 0:

(dA<)
y2 · e = −1 ` [{x′ = f(x), y′ = a(x) · y + b(x) & Q}]y2 · e = −1

e < 0 ` [{x′ = f(x) &Q}]e < 0

Exercise 4:
What premise have we omitted, and why is it valid?
Answer: The omitted premise is e < 0↔ ∃y y2 ·e = −1. It’s valid by the following reasoning:
If e is 0, y2 ·e is zero, and if e is positive, y2 ·e would always be positive or zero at best (since
y2 is nonnegative), so y2 · e = −1 only happens if e is negative. And it’s always possible
when e < 0 by setting y =

√
−e.

Since we’ve checked that this premise is always true, we don’t have to list it as a branch
when you write down the proof rule.

Further, since we’re going to use differential invariants after applying (dA<), we can
predict that “all” we need to do in our proof is find a definition of a(x) · y + b(x) such that
y2 · (e)′ + e · 2y(a(x) · y + b(x)) = 0 is valid. Sadly, this is not nearly as intuitive as our
previous idea of “L is the lost velocity”. At the same time, we have a much better chance
that the proof will go through, because now we’re doing DI on a formula that really v with

7



the loss, avoiding the problem we had before trying to prove a branch where L appeared by
itself without v. Less inspiring, but equally relevant, is the fact that we can do this part
mechanically, as we will demonstrate using our parachuting example.

First of all, how do we express our postcondition as e < 0 anyway? Not too hard: we
pick e = v +

√
g
c

and then e < 0 is the same as v < −
√

g
c
.

Now let’s take (y2 · (e)′ + e · 2 · y · g(y, x) = 0) and solve for g(y, x):

y2 · (e)′ + e · 2 · y · g(y, x) = 0

⇐⇒ y2 ·
(
v +

√
g

c

)′

+

(
v +

√
g

c

)
· 2 · y · g(y, x) = 0

⇐⇒ y2 · v′ +

(
v +

√
g

c

)
· 2 · y · g(y, x) = 0

⇐⇒
(
v +

√
g

c

)
· 2 · y · g(y, x) = −y2 · v′

⇐⇒ g(y, x) =
−y2 · v′(

v +
√

g
c

)
· 2 · y

⇐⇒ g(y, x) =
−y · v′(

v +
√

g
c

)
· 2

At this point we should be mildly alarmed. One of the greatest sins we can commit in life
is division by zero, and we’re dividing by something scary, because actually right now we’re
in the middle of trying to prove that v +

√
g
c

isn’t zero. So maybe we got into a circular
argument. But actually if we substitute for v′ and do some clever arithmetic we can get out
of this mess:

g(y, x) =
−y · v′(

v +
√

g
c

)
· 2

⇐⇒ g(y, x) =
−y · (c · v2 − g)(
v +

√
g
c

)
· 2

⇐⇒ g(y, x) =
−y · c · (v2 − (g/c))(

v +
√

g
c

)
· 2

⇐⇒ g(y, x) =
−y · c · (v −

√
g
c
)
(
v +

√
g
c

)(
v +

√
g
c

)
· 2

⇐⇒ g(y, x) =
−y · c · (v −

√
g
c
)

2

Where the trick here was applying the identity a2 − b2 = (a + b)(a − b) to simplify the
denominator. Now the denominator is 2, which we can trust to not be 0.

8



You’ll notice we didn’t use any fancy proof rules while doing this derivation. There’s a
good reason for that: we don’t have to do this derivation in dL. If we did it wrong, then
when we use differential assignment in KeYmaera X we would just end up with branch that
doesn’t prove. This derivation is something we do on paper to figure out the right input for
our ghost ODE.

So now that we know the right thing let’s go back and apply DA. If we did our job right,
DI will finish it. For the sake of clarity, we write out lots of intermediate arithmetic steps:

*R
Γconst ` (cv2 − g) = (v2 − g

c
) · c

R
Γconst ` (cv2 − g) =

(
v +

√
g
c

)
·
(
c
(
v −

√
g
c

))
R

Γconst ` y2 · (cv2 − g) =
(
v +

√
g
c

)
· y2 ·

(
c
(
v −

√
g
c

))
R

Γconst ` y2 · (cv2 − g) +
(
v +

√
g
c

)
· 2y · y ·

(
−1

2
· c
(
v −

√
g
c

))
= 0

[′:=]
Γconst ` [v′ := cv2 − g][y′ := y ·

(
−1

2
· c
(
v +

√
g
c

))
]y2 · v′ + (v +

√
g
c
) · 2y · y′ = 0

derive
Γconst ` [v′ := cv2 − g][y′ := y ·

(
−1

2
· c
(
v +

√
g
c

))
]y2 ·

(
v +

√
g
c

)′
+ (v +

√
g
c
) · 2y · y′ = 0

dI
Γconst, y

2 ·
(
v +

√
g
c

)
= −1 ` [v′ = cv2 − g, y′ = y ·

(
−1

2
· c
(
v +

√
g
c

))
]y2 ·

(
v +

√
g
c

)
= −1

dA<
Γconst, v +

√
g
c
< 0 ` [v′ = cv2 − g](v +

√
g
c
< 0)

5 Ping Pong with Air Resistance

For our next model, we will revisit our recurring ping pong example and add in air resistance.
Hopefully the words air resistance bring differential ghosts to mind (since “air resistance”
suggests “loss”). Note: In recitation we didn’t really have time for this section.

Our continuous dynamics are:

{x′ = v, v′ = −v2, t′ = 1 & t ≤ T}

Recall that v > 0 initially. This ODE models air resistance which acts in the opposite
direction, slowing velocity down with deceleration proportional to v2. For simplicity, the
constant of proportionality is set to 1.

Exercise 5:
Recall/derive the solution to the system.
Answer: The solution of this system (where x0, v0 are the initial values of x, v respectively
and v0 > 0) is

v(t) =
v0

1 + v0t

x(t) = ln (v0t+ 1) + x0

Keep the solution in mind for everything we do next: it is instructive to see how its properties
translate over to ODE invariants that we prove (and vice versa).

9



Exercise 6:
Is the formula that we just proved for the simpler dynamics still valid if we replaced the
ODEs with this more complicated dynamics?
Answer: Yes, one could think of the simpler dynamics as a “worst case” scenario where the
air resistance is negligible. The ball will always fly further to the right in this worst case
compared to when there is some air resistance.

Now, since the ball is flying with positive velocity to the right we might expect that l ≤ x
should be the simpler one to prove of the two conjuncts in the postcondition. This intuition
will actually turn out to be incorrect, but let us follow our noses for now and try to prove
the right conjunct x ≤ r first:

v > 0 ∧ t = 0 ∧ l ≤ x ∧ x+ vT ≤ r → [{x′ = v, v′ = −v2, t′ = 1 & t ≤ T}]x ≤ r

In contrast to our previous proof, we no longer have a closed form expression for x in
terms of polynomials (or rational functions), so simply cutting in the solution will not work.

Exercise 7:
What should we do next? (Hint: use the physical intuition)
Answer: Instead of proving that x = x0 + v0t is an invariant for the ODE, we could instead
try to prove it as an upper bound, i.e., x ≤ x0 + v0t because that is what our physical
intuition told us.

Let us start by doing the main part of the proof. As explained earlier, we have also intro-
duced fresh variables x0, v0 that store the initial values of x, v respectively. The arithmetic
at the end works because we know the domain constraint t ≤ T

∗
R v0 > 0, l ≤ x0, x0 + v0T ≤ r, t ≤ T ∧ x ≤ x0 + v0t ` x ≤ r
dW v0 > 0, t = 0, x = x0, v = v0, l ≤ x0, x0 + v0T ≤ r ` [{· · ·& t ≤ T ∧ x ≤ x0 + v0t}]x ≤ r 1©
dC v0 > 0, t = 0, x = x0, v = v0, l ≤ x0, x0 + v0T ≤ r ` [{x′ = v, v′ = −v2, t′ = 1 & t ≤ T}]x ≤ r

This proof would of course only work if the dC step’s other premise, 1©, works out. The
premise in 1© is:

v0 > 0, t = 0, x = x0, v = v0, l ≤ x0, x0 + v0T ≤ r ` [{x′ = v, v′ = −v2, t′ = 1 & t ≤ T}]x ≤ x0 + v0t

If we tried to use dI to prove this, we would get stuck. Here is the relevant calculation:

(x ≤ x0 + v0t)
′ ≡ (x)′ ≤ (x0 + v0t)

′

≡ x′ ≤ v0t
′

≡ v ≤ v0

Note: For brevity, we will abuse notation and substitute for the primed variables
with their respective RHSes in the ODEs in our calculations for this section. You

10



should NOT do this in a formal proof but it is fine in rough work, as long as
that is clearly stated.

This failed because the dI step does not know much about v yet: we only have t ≤ T in
the domain constraint.

We actually need to first add v ≤ v0 to the domain constraint with a dC step before the
aforementioned dI would succeed. Fortunately, this latter step is straightforward because
−v2 ≤ 0 is a provable in real arithmetic:

(v ≤ v0)
′ ≡ (v)′ ≤ 0

≡ −v2 ≤ 0

That finishes off the proof of safety with respect to the right boundary. Let us now return
to the other branch of the proof which we thought was easy:

v > 0 ∧ t = 0 ∧ l ≤ x ∧ x+ vT ≤ r → [{x′ = v, v′ = −v2, t′ = 1 & t ≤ T}]l ≤ x

Exercise 8:
What is a good starting point?
Answer: It’s always reasonable to try dI—if it works you’re done, and if it fails, the compu-
tation can still provide useful information. Here, dI does not work:

(l ≤ x)′ ≡ 0 ≤ x′

≡ 0 ≤ v

Following our noses like before, we will need to first prove a property about v before
trying dI. We could try to use dI to prove that v > 0 is an invariant since we already know
v > 0 is true initially. However, the calculation would not work out, because −v2 could be
negative, and so the premise of dI would not be valid:

(v > 0)′ ≡ v′ ≥ 0

≡ −v2 ≥ 0

It is actually true that v > 0 is an invariant of the ODE, but the proof is much more
intricate than just a simple dI.

Exercise 9:
What should we do next?
Answer: You should be thinking differential ghosts here, because the property we’re trying
to prove is getting less true over time. More specifically, you could be thinking about the
dA> rule, since v > 0 fits the shape for this rule.

Exercise 10:

11



The dA> rule still requires us to pick a choice of ghost ODE. What ghost ODE should we
use for proving v > 0 invariant?
Answer: We can figure this out by starting the computation and solving for what we need.
In particular, suppose we tried to prove vy2 > 0 using dI.

(vy2 > 0)′ ≡ v′y2 + v(2yy′) ≥ 0

≡ −v2y2 + v(2yy′) ≥ 0

Exercise 11:
What could we pick for y′ to make the above formula valid?
Answer: If we set y′ = vy

2
, then the LHS of the inequality cancels out.

Note: In KeYmaera X you have to be fairly careful when writing down a differen-
tial ghost. So we should probably rearrange this to linear form, e.g., with y′ = v

2
y.

Let’s revisit why proving v > 0 invariant was so difficult whereas proving for v ≤ v0 seemed
to be so much easier. The issue becomes especially clear once we visualize the ODE v′ = −v2
with a velocity-time plot:

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

t

v

For an initial value where v > 0 (the red point), the value of v decreases towards 0
along the differential equation. In other words, it is getting “worse” over time, although it
never quite reaches v = 0. This makes it difficult to prove with dI, because dI works for
proving properties that become “more true” over time. Recall that for an inequality v > 0,
dI requires that its derivative is non-negative along solutions to the ODE, which is clearly
not the case here.

12



Contrast this with the case for v ≤ v0. Notice that, regardless of where the initial value
of v is, its value will always be decreasing towards 0 i.e., v ≤ v0 is getting “more true” over
time. This makes it well suited for a dI proof.

Exercise 12:
Our ping pong model carefully avoided the special case where v = 0. In fact, all of the
formulas that we considered would still work if we assumed v ≥ 0 instead of v > 0. Work
through the proofs with this assumption and examine which part(s) of the proofs need to be
changed.

13


	Motivation and Learning Objectives
	Intro to Ghosts
	Examples
	Discrete Ghosts Example
	Differential Ghosts Examples

	James Bond the Parachuter
	Ping Pong with Air Resistance

