
15-424 Lab 6: Safe Ball Passing in RoboCup Alexei Colin November 19, 2014

1 Introduction

Robotic soccer, introduced via the RoboCup compe-
tition, presents a rich controller design challenge. In
Small Size League a team of six small round robots
with omni-directional wheels and ball-kicking solenoids
is controlled via a central program (Mission Control),
with global knowledge about the field, the players and
the ball. The ball is a standard golf ball. A kick-off
is pictured in Figure 1.

The rule book for robotic soccer is not much dif-
ferent from that for human soccer. To avoid penalty
cards and damage, the team of robots must avoid
physical contact with each other, with the opponents,
and with the walls. To stand a chance for victory, the
team should keep the ball within the field boundaries.
The basic game-play strategy is passing the ball to a
team-mate that is closer to the goal.

In this work, we will focus only on one team’s
robots (no opponents) and on a common gameplay
strategy of passing the ball without letting it go out
of bounds.

We verified the safety property for a hybrid pro-
gram for a team of exatly two robots. However, the
hybrid program was designed so that adding more
robots amounts to no more changes than mechan-
ically duplicating expressions. Not nearly as gen-
eral as an HP in quantified differential dynamic logic
would be, but designed with extension to multiple
teammates in mind. The source and destination no-
tions described in Section 2.4 make this possible. With
two robots, neither can be an obstacle, so some branches
of the proof that are trivial would no longer be trivial
with more than two robots.1

1Alas, the proof attempt for a three-robot team, did not
succeed before time ran out, however hope that the model does
readily generalize lives on.

Figure 1: Kickoff in RoboCup Small Size League.

2 Model

2.1 Field

The field and all its contents is modeled in two di-
mensions, with the origin at the center of the field.
The field is a rectangle of size F × F . On the real
RoboCup field, robots can choose to chip-kick the ball
in a third dimension over other robots. A 3D model
would be essential to cover the game fully, however
the sacrificed dimension wins tractability at a cost
that is much less than “33% of the game”.

2.2 Ball

The ball is modeled as a point, (Bx, By). The ball
moves in straight lines with constant speed Bs in any
direction denoted by a normalized vector (Bdx, Bdy).

A point-mass model is simple yet powerful enough
to subsume most of the effects that a size-aware model
would add, such as spin, since these effects can be
described at the trajectory level and since the ball is
very small compared to the robots (golf ball). We
expect that even most advanced models of the game
would model the ball as a point-mass. We simplify
further by neglecting the mass, thus letting the ball
move at constant speed, and leave non-zero mass as
an extension.

Upon hitting a robot, the ball is either captured
by the robot’s ball handling mechanism (a dribbler)
or reflected. Which of the two outcomes happens de-
pends on where the ball comes in contact with the
robot. The conditions under which the robot’s drib-
bler can capture the ball and the direction of the re-

1 of 13

flection is defined by the robot model.

2.3 Robots

Small-Size League robots are small cylinders, usually
with a flat front as is visible in Figure 1. Real robots
are equipped with omni-wheels arranged in a dia-
mond pattern, which lets them spontaneously move
in any direction. However, in this work we focus on
controlling the ball kicking and work with stationary
robots. Each robot is equipped with a radio, which
acts as the ultimate “sensor” for positions and veloc-
ity vectors of all other robots and the ball (broadcast
by Mission Control). Global knowledge is a funda-
mental aspect of the Small-Sized League. Hence, the
controllers we model make use of the global state.

We next introduce key aspects of the robot that
any model must define. Then, we describe two models
that were considered in this work and motivate the
ultimate choice.

Each robot has a ball handling mechanism, which
is usually a dribbler. A dribbler is a short rubber-
ized shaft that rotates towards the inside of robot.
Should the ball come in contact with it at a suit-
ably low velocity, the dribbler would put a spin on
the ball towards the robot, and keep the ball in place
even as the robot moves. For a pass to be received
successfully, the ball must reach the robot within the
boundaries of this mechanism. If the ball reaches the
robot at some other point, then it is reflected from
the robot, as a golf ball would be upon hitting a hard
surface. Ball reflection off of robots is very common
in actual RoboCup matches and is most often due
to either miss-aimed kicks or by robots ending up on
the ball trajectory either deliberately for defense or
inadvertently.

We model the ball contact location requirement
for successful pass receipt and the ball reflection be-
havior. The direction of reflection is defined by the
each robot model. Recall from our simplified ball
model that the ball moves at a constant velocity. If
any passes are to be successful, we must assume that
the fixed ball velocity is low enough for a dribbler to
capture the ball. This eliminates the need to explic-

itly model the maximum ball velocity for pass receipt.

Two models were considered: a segment model
and a disk model. The segment model was chosen
in favor of the simpler occluded region calculation
However, the disk model is a more faithful and more
flexible representation. The occluded region calcula-
tion for the disk model is included to serve as a basis
for extending this work. The evolution domain of the
ball is limited to the non-occluded region.

2.3.1 Segment Model

A robot is represented as a one-dimensional verti-
cal segment of length Rr as shown in Figure 2. The
position of the robot is represented by the center of
the segment (Ri,x, Ri,y). The robot’s ball handling
mechanism (dribbler) is located at the center of the
segment. In order for the dribbler to capture the ball,
the ball must come in contact with the robot at ex-
actly the dribbler location, i.e. at (Ri,x, Ri,y). From
all other contact points, the ball is reflected with re-
spect to the horizontal axis as shown in Figure 3.
The reflection dynamics are described more formally
in Section ??.

While this model appears to be far from reality,
it retains the essence of the robot’s effect on the ball.
At commonly sharp angles of passes and shots, the
segment obstructs the line-of-sight in a similar way
as a disk would. Also, a collision with and reflection
of the ball from a vertical “wall” is a closer model
for the flat-front robots than a reflection from a per-
fect disk. The orientation of the robot segments is
chosen to be perpendicular to the orientation of the
goal, since we target a gameplay of “zig-zag” passing
towards the goal, in which passes are roughly paral-
lel to the goal. We prevent infinities by disallowing
vertical alignment among robots, and hence vertical
passes.

Zero-Area Property and Occluded Region:

In the segment model the robots have zero area.
This characteristic is a two-edge sword. On one hand,
it simplifies the ball dribbler mechanism modeling
to the bare minimum and, consequently, does not
require the robot orientation to be modeled. The

2

segment-robot can receive a pass from any direction
except along a vertical trajectory. There is no special
handling of the vertical in the robot model; instead,
such are denied by restricting robot positions to dis-
joint x-coordinates. On the other hand, the zero-area
characteristic complicates the collision detection logic
for a somewhat subtle reason as outlined below.

To detect collision between the ball and any seg-
ment robot is not as straightforward as checking that
the ball is not within any robot segment, because the
robot segment needs to be a boundary of the evo-
lution domain. The evolution domain must include
its boundary, because otherwise continuity is lost be-
tween the cyber and the physical. When the physics
evolution ends, it always ends within the domain. If
the robot segment is outside the domain, then the
cyber part that runs after the physics will never see
the case when the ball is at a robot, i.e. is located at
the robot’s ball handling mechanism, i.e. the center
of the robot segment. However, if the robot segment
is included into the evolution domain, there is not-
ing stopping the physics from taking the ball on a
trajectory straight through a robot without any in-
terruption.

To work around this consequence, we let the evo-
lutionary domain include the robot segment, but ex-
clude an occluded region “behind” the robot, where
“behind” is defined relative to the direction of the
ball x-velocity. The non-occluded region is the area
through which the ball can physically travel in a straight
trajectory without having collided with the segment
robot. The complement of this region is the occluded
region. In Figure 2 the occluded region is shaded.

2.3.2 Disk Model

The disk model is a higher-fidelity alternative to the
segment model. A robot is represented as a perfect
disk, neglecting the frontal flatness, centered at the
robot position (Rx, Ry). The coordinate system is
translated such that the origin is at the ball position
(Bx, By) in order to facilitate the derivation of the
expression for the occluded region boundary.

Since a disk has a non-zero area, the disk model

does not require to compute the occlusion region needed
for a zero-area segment robot model as discussed in
Section ??. In the non-zero area model, the colli-
sion check would be a simple ball-within-robot check.
There would be no issues with including the bound-
ary of the disk into the evolution domain. However,
the disk model requires a more complicated notion of
the ball handling mechanism in the robot.

There must be a way for the ball to make con-
tact with the robot that is not classified as a collision.
Letting the robot receive passes (only) at its center,
as we do in the segment model, would no longer work,
since the collision condition would trigger before the
ball would reach the robot center. Therefore, the ball
handling mechanism would need to be on the edge of
the robot and the kicking robot would need to di-
rect its kick towards the location of the mechanism.
This seems doable, however this leads to the robot
acquiring an orientation. The robot would only be
able to receive passes from a certain side: the side
that is reachable by the ball trajectory without pass-
ing through the robot. We could let the robot receive
passes from all directions by endowing it with two ball
handling mechanisms: one on each side. However,
the kicking robot would still need to be aware of this
and explicitly figure out which mechanism to aim its
pass for. Furthermore, there remains the question of
the flat front, particularly relevant for ball reflection
dynamics.

The complexity in ball handling mechanism that
in a non-zero area disk model was weighed against the
complexity in collision check in a zero-area segment
model. The former appeared less formidable and was
undertaken. Retrospectively, the disk model should
be the choice going forward, not only due to its re-
alism, but also because even if it is more complex, it
is less hacky, which should lead to a more tractable
hybrid program.

2.4 Source and Destination

Our controller, physics, and proof all rely on keep-
ing track of the source, S, and destination, D of the
ball. These are defined whenever the ball is in mo-

3

Figure 2: A successful ball pass in progress. Evolu-
tion domain excludes the shaded region.

tion. Only when the ball is stationary neither of these
is necessary. Whenever the direction of the ball is set
in the hybrid program, the source and destination are
updated accordingly. In case of reflection, the desti-
nation should be set to the nearest intersection of the
direction vector with a robot (obstacle) or the field
boundary.

An assumption implicit in our hybrid program is
that an unobstructed teammate always exists. The
HP aborts should this not be the case, which is not
acceptable if a controller is to be verified in a world
where this assumption does not hold. There is little
excuse for not adding a non-deterministic choice to
keep the ball in the possession of the robot that has
it.2

2.5 Dynamics

A robot influences the motion of the ball in two cases.
Upon a successful pass, the receiver takes possession
of the ball and can redirect it as it sees fit. Figure 2

2An attempt was made to generalize the HP such that the
chosen destination for the kick can be the same as the source,
however success was not achieved before time ran out.

Figure 3: Ball reflection which results from an unsuc-
cessful pass. Three sequential evolutions are shown.

shows an evolution corresponding to a successful pass
in progress. The shaded occluded region excluded by
the evolution domain formula. Note that this region
is a function of which robot is kicking and which re-
ceiving.

Upon an unsuccessful pass, or an arbitrary col-
lision with the ball, the ball reflects off of the robot
as it would reflect from a flat vertical wall. Nothing
else affects the motion of the ball, which implies the
ball would roll out of bounds if its path is clear. Fig-
ure 3 illustrates this in a game-play example of three
consecutive evolutions. The ball is kicked by Ra but
misses Rb receptacle and is reflected twice before go-
ing out of bounds.

A successful path is one in which the ball reaches
exactly the midpoint of the robot-segment, where
the ball capturing and kicking mechanism is located.
Upon contact at any other point on the robot the ball
is reflected. An (very feasible) extension for flexibil-
ity and realism is expanding the acceptable receiving
point to a small range around the midpoint. On suc-
cessful repossession, the receiver can send the ball
wherever by directly setting its direction vector. We
do not restrict the outgoing angle and let the ball be
launched from either side of the robot-segment.

This dynamics is implemented as the “physics”

4

part of the hybrid program, which spans both the
continuous differential equation with its evolution do-
main and some discrete logic. The collision event is
detected by including into the evolution domain only
the cone region which the ball can reach from the
kicker without collision, which is calculated as above
and below the two rays from the kicking robot to the
extremities of each of the other robots (obstacles).
That is,

By ≤ (R2,y −Rr) − Sy

R2,x − Sx
(Bx − Sx) + Sy

By ≥ (R2,y +Rr) − Sy

R2,x − Sx
(Bx − Sx) + Sy

An event-triggered hybrid program is a fair ap-
proximation to the robot behavior because the ball
receiving mechanism traps the ball without any ac-
tion by the microcontroller that is limited to a finite
frequency. In a more faithful time-triggered model
would be a delay (due to finite frequency) between
receiving the ball and kicking it again. During this
delay the ball would remain stationary inside the
robot’s receptacle, so it is of little interest to model
it.

3 Purpose and Value

The robot controller is responsible for choosing the
teammate to which to pass the ball and steering the
ball towards it. Should it make a bad choice, e.g. Rc

instead of Rb in Figure 4, or send the ball in a wrong
direction, the ball will likely go out of bounds and all
hope for victory would be lost. We proved that this
cannot happen with our basic controller that sends
the ball to a randomly chosen non-occluded teammate
by calculating the direction vector from the source
and destination points. Both the choice and the cal-
culation are correct.

As a result of nondeterministic choice of the des-
tination, this controller is flexible enough to include
any logic for choosing the recipient of the pass as long
as the given occlusion checks are in place. An exam-
ples of a controller to which the proof still applies

Figure 4: Controller needs to choose a non-occluded
pass receiver.

is one that chooses the teammate closest to the goal
among unoccluded ones.

The present controller might stand out as very
simple in light of the effort required to verify but
one property of it. However, a controller similar in
spirit but extended in functionality, for example, one
that targets a world where robots could move, might
wish to calculate ball trajectories that are safe from
interception. A bet that an off-hand design of this
moderately more advanced controller would be cor-
rect for any robot and ball positions possible on the
field does not feel quite like a sure winner. A formal
proof of safety similar to the one done in this work
would bring confidence into the design.

4 Proof Techniques

The proof is built from these three key pieces:

1. The ball will move along the source-destination
line

5

Figure 5: The “intersection” of invariants constrains
the motion of the ball to be along the bold dash-
dotted line.

2. The ball will start from the “front” of the source

3. The ball will stop moving when it hits the des-
tination.

Together these imply that the ball will move between
the source and the destination, which will keep it
within bounds as long as the former are. The region
delineated by the invariants is the bold dash-dotted
line in Figure 5.

4.1 Differential and Loop Invariants

The differential invariant gives the first of the above
three pieces. It states that the robot always moves
along the line (not segment) between the source, S,
i.e. the kicker or reflecting point, and the destination,
D, i.e. the receiver or a dummy destination. That is,

φ ≡ (By − Sy)(Dx − Sx) = (Dy − Sy)(Bx − Sx)

The loop invariant makes several strong state-
ments:

• En-route from robot to robot: the source and
the destination are always two (distinct) robots

• Moves on a line from source to destination or is
stationary (the differential invariant condition)

• Moves within the segment between source and
destination (stronger than the differential in-
variant, relies on the initial conditions at which
the differential equations start)

• No collisions: the ball can never be in the po-
sition about to be reflected, i.e. it is either ex-
actly in the middle of any robot segment or out-
side it.

• Ball is within field boundaries

5 Conclusion and Future Work

We have developed a basic hybrid program for mod-
eling ball passing among robotic football players in
RoboCup Small Sized League. A proof that a simple
controller keeps the ball within field boundaries was
derived.

This work asks to be extended in two directions:
to make the model more realistic and to prove other
safety and efficiency goals. Among the most plausible
extensions are

• an ability to kick the ball into a goal3

• disk robot model with an orientation and a drib-
bler that is sensitive to incoming velocity and
angle of the ball

• ability of robots to move (while ball stationary)

• a ball with non-zero mass subject to friction

3Attempted at length, but no proof. In another attempt,
instead of letting the ball evolve outside the field if it went
through the goal, I would take a different approach: at the goal,
stop the physics just before it reaches the boundary (By < F),
but anywhere else on the boundary, continue the physics (By ≤
F), and have the safety condition be the strict inequality.

6

A safety goal of interest is to ensure the ball stays
above a certain velocity whenever it moves, which
minimizes the possibility of interception by the op-
ponent. A controller that could do this would need
to pick partners that are close and would not shoot
at the goal from far away. An efficiency goal could
be to ensure there is a way for the ball to get to the
goal.

The above list of extensions is far from exhaus-
tive, however, at this point it as clear as ever how
simple extensions can quickly make the hybrid pro-
gram or the proof enormously more difficult.

7

6 Appendix: Robot Controller Hybrid Program

/* Lab6: safe ball passing in Robocup Small -Size -League */

\functions {

R F; /* field size (FxF) */

R Rr; /* robot radius */

R Bsk; /* constant ball speed */

\external R Sqrt(R);

}

\programVariables {

/* Robots */

R R1x; R R1y;

R R2x; R R2y;

/* The ball */

R Bx; R By; /* ball position */

R Bs; /* ball speed (equals either Bsk or zero) */

R Bdx; R Bdy; /* ball direction (a normalized vector) */

/* Intermediate helper variables */

R Sx; R Sy; /* Source: position of the robot kicking the ball */

R Dx; R Dy; /* Destination: target position to where the ball is kicked */

R rx; R ry; /* Vector from kicker to receiver */

R norm_r; /* length of the kick vector */

R ROx; R ROy; /* potential obstacle robot position */

R ROiy; /* intersection of obscle robot with line of sight */

R t; /* evolution time */

/* Initial value ghosts */

R Bs0;

R Bx0; R By0;

R Bdx0; R Bdy0;

}

\problem{

(

/* Parameters are sane */

F > 0 & Bsk > 0 & Rr > 0 &

/* Robots are inside the field */

-F < R1x - Rr & R1x + Rr < F & -F < R1y - Rr & R1y + Rr < F &

-F < R2x - Rr & R2x + Rr < F & -F < R2y - Rr & R2y + Rr < F &

/* Robots do not overlap in the x dimension (no vertical passing) */

(R1x - Rr > R2x + Rr | R2x - Rr > R1x + Rr) &

/* Ball is inside the field */

-F < Bx & Bx < F & -F < By & By < F &

/* Ball is stationary */

Bs = 0 & Bdx = 0 & Bdy = 0

)

8

->

\[

/* Initialize helper variables to satisfy the loop invariant */

Sx := R1x;

Sy := R1y;

Dx := R2x;

Dy := R2y;

(

/* If a robot has the ball ... */

if (Bx = R1x & By = R1y |

Bx = R2x & By = R2y)

then

/* ... then , the robot chooses a teammate and passes the ball to it */

/* This sub -program models the controller decision procedure that

* chooses the teammate to whom to pass the ball.

*

* The choice of teammate is modeled as a nondeterministic choice

* among the non -occluded teammates. The HP models this by first

* nondeterministically choosing any destination , and then aborting

* paths where the chosen destination is occluded.

*

* Note: an unfortunate assumption is that a non -occluded teammate

* always exists. There ’s no excuse for not adding a choice to keep

* the ball , however a proof atempt for a modified HP did not

* succeed before time ran out.

*/

/* source location of the kick */

Sx := Bx; Sy := By;

/* destination of the kick */

(Dx := R1x; Dy := R1y)

++

(Dx := R2x; Dy := R2y);

/* Don ’t pick ourselves as the kick destination */

?(Sx != Dx | Sy != Dy);

/* Check if any of the other robots obstruct the pass trajectory

* between source and dest; and abort any controller code paths

* which picked an obstructed destination. This is done by

* checking that the pass trajectory does not intersect any of

* the robot segments.

*

* The following steps are repeated for each robot RO.

*

* Find point (ROx , ROiy): the intersection of ball trajectory with the

* line that contains the obstacle robot segment (’i’ for

* ’intersection ’). The ball trajectory is the line from source (Sx, Sy)

* to destination (Dx, Dy). The line that contains the obstacle robot

* segment is a vertical line through ROx.

*

* ROiy := *; (?((ROiy -Sy)*(Dx-Sx) = (Dy-Sy)*(ROx -Sx)));

*

9

* The robot does not obstruct a pass if either:

* (A) the robot is the source (ourselves) or the destination ,

* (B) the ball trajectory does not pass through the robot

* segment , i.e. the intersection (ROx , ROcy) lies

* outside of the robot segment.

*

* ?(((ROx = Sx & ROy = Sy) | (ROx = Dx | ROy = Dy)) |

* (ROiy > ROy + Rr | ROiy < ROy - Rr));

*/

/* Robot 1 */

ROx := R1x; ROy := R1y;

ROiy := *; (?((ROiy -Sy)*(Dx -Sx) = (Dy -Sy)*(ROiy -Sx)));

/* It ’s not an obstacle if it is ourselves or the destination */

/* Is in the line of sight */

?(((ROx = Sx & ROy = Sy) | (ROx = Dx | ROy = Dy)) |

(ROiy > ROy + Rr | ROiy < ROy - Rr));

/* Robot 2 */

ROx := R2x; ROy := R2y;

ROiy := *; (?((ROiy -Sy)*(Dx -Sx) = (Dy -Sy)*(ROiy -Sx)));

/* It ’s not an obstacle if it is ourselves or the destination */

/* Is in the line of sight */

?(((ROx = Sx & ROy = Sy) | (ROx = Dx | ROy = Dy)) |

(ROiy > ROy + Rr | ROiy < ROy - Rr));

/* The kick vector: Vector from source to the destination */

rx := Dx - Sx;

ry := Dy - Sy;

/* Pass distance , for getting a normalized ball direction vector */

norm_r := *; ?(norm_r ^2 = rx^2 + ry^2 & norm_r > 0);

/* Set the direction and speed of the ball */

/* SMT does not like division

Bdx := rx/norm_r;

Bdy := ry/norm_r;

*/

Bdx := *; ?(Bdx*norm_r = rx);

Bdy := *; ?(Bdy*norm_r = ry);

Bs := Bsk

else if (/* Ball reflection physics */

/* If ball is moving ... */

((Bs*Bdx)^2 + (Bs*Bdy)^2 > 0) &

/* ...and has hit a robot outside of the robot ’s

’ball receiver ’ mechanism */

(Bx = R1x & R1y - Rr < By & By < R1y + Rr |

Bx = R2x & R2y - Rr < By & By < R2y + Rr))

then

/* Set the impact position as the source of the "kick" */

Sx := Bx;

Sy := By;

/* Reflect the ball */

Bdx := -Bdx;

Bs := Bsk;

10

/* Let the destination of the emulated "kick" be a waypoint ahead

* of the ball position in the direction of the reflection. This

* satisfies the evolution invariant that the ball must move in a

* line between source and destination. Note that destination (D)

* is not used in the evolution domain; it is used only in the

* invariants and as a local (within -iteration) variable in the

* cyber controller. It does not affect physics at all , it is a

* ’tool ’ that we use for the proof. If reflection does happen , the

* ball will keep rolling until it goes out of bounds or hits

* another robot (and reflects again , etc.) regardless of what we

* set the destination to here.

*/

Dx := Bx + Bdx;

Dy := By + Bdy

fi

fi;

/* Next comes the physics */

/* Ghosts */

Bdx0 := Bdx;

Bdy0 := Bdy;

Bs0 := Bs;

Bx0 := Bx;

By0 := By;

t := 0;

(

/* Evolve: let the ball loose!

* The ball evolution is split into two cases (two choices):

* (A) the ball is in motion (positive speed)

* (B) the ball is stationary

* The differential equations are the same , however the we cannot maintain

* the same invariant (that the ball is on a line between source and

* destination) for a stationary ball since the initial position of the

* ball is unrestricted (as long as it is stationary).

*/

/* Ball evolution: case (A): ball in motion */

{Bx ’ = Bs*Bdx , By ’ = Bs*Bdy , Bdx ’ = 0, Bdy ’ = 0, t’ = 1,

/* Anything goes as long as the ball is stationary */

(Bs*Bdx)^2 + (Bs*Bdy)^2 > 0 &

/* otherwise , physics could take the ball only into this region: */

(

/* ... "in front of" the kicking (or reflecting) robot */

(Bdx > 0 & Bx >= Sx | Bdx < 0 & Bx <= Sx) &

/* detect collission with a robot */

(

/* Robot 1 */

(

/* region in front of the collission candidate robot */

(((Bdx > 0 & Bx <= R1x) | (Bdx < 0 & Bx >= R1x)) | /* union with */

11

/* or "behind" the destination robot , but

not having passed through it (i.e. not in the "shadow ") */

/*

(By >= ((R1y+Rr -Sy)/(R1x -Sx))*(Bx -Sx) + Sy &

By <= ((R1y -Rr-Sy)/(R1x -Sx))*(Bx -Sx) + Sy)

*/

(

((By - Sy)*(R1x -Sx) >= (R1y+Rr-Sy)*(Bx -Sx) & R1x - Sx >= 0 |

(By - Sy)*(R1x -Sx) <= (R1y+Rr-Sy)*(Bx-Sx) & R1x - Sx < 0) &

((By - Sy)*(R1x -Sx) <= (R1y -Rr-Sy)*(Bx -Sx) & R1x - Sx >= 0 |

(By - Sy)*(R1x -Sx) >= (R1y -Rr-Sy)*(Bx-Sx) & R1x - Sx < 0)

)

)

) &

/* Robot 2 */

(

/* region in front of the collission candidate robot */

(((Bdx > 0 & Bx <= R2x) | (Bdx < 0 & Bx >= R2x)) |

/* or "behind" the destination robot , but

not having passed through it (i.e. not in the "shadow ") */

/*

(By >= ((R2y+Rr -Sy)/(R2x -Sx))*(Bx -Sx) + Sy &

By <= ((R2y -Rr-Sy)/(R2x -Sx))*(Bx -Sx) + Sy)

*/

(

((By - Sy)*(R2x -Sx) >= (R2y+Rr-Sy)*(Bx -Sx) & R2x - Sx >= 0 |

(By - Sy)*(R2x -Sx) <= (R2y+Rr-Sy)*(Bx-Sx) & R2x - Sx < 0) &

((By - Sy)*(R2x -Sx) <= (R2y -Rr-Sy)*(Bx -Sx) & R2x - Sx >= 0 |

(By - Sy)*(R2x -Sx) >= (R2y -Rr-Sy)*(Bx-Sx) & R2x - Sx < 0)

)

)

)

)

)

}@invariant(

Bdx = Bdx0 & Bdy = Bdy0 & Bs = Bs0 ,

/* on the line connecting the source to the destination */

((By-Sy)*(Dx-Sx) = (Dy -Sy)*(Bx-Sx))

)

++

/* Ball evolution: case (B): ball stationary */

{

Bx’ = Bs*Bdx , By’ = Bs*Bdy , t’ = 1,

(Bs*Bdx)^2 + (Bs*Bdy)^2 = 0

}@invariant(Bdx = Bdx0 & Bdy = Bdy0 & Bs = Bs0 & Bx = Bx0 & By = By0)

)

)* @invariant(

/* In order to be able to hide this before applying global rule invariant

rule , need to duplicate these initial conditions here explicitly */

(R1x - Rr > R2x + Rr | R2x - Rr > R1x + Rr) &

/* Strong statement: we can never be in the reflection situation */

(Bdx = 0 & Bdy = 0 | /* doesn ’t apply if it’s stationary */

(

((Bx != R1x | (By < R1y - Rr | By > R1y + Rr)) | (Bx = R1x & By = R1y)) &

12

((Bx != R2x | (By < R2y - Rr | By > R2y + Rr)) | (Bx = R2x & By = R2y))

)

) &

/* Strong statement: always en-route between robots */

(

(Sx = R1x & Sy = R1y |

Sx = R2x & Sy = R2y) &

(Dx = R1x & Dy = R1y |

Dx = R2x & Dy = R2y)

) &

/* The kicker should never choose itself as the destination */

(Sx != Dx | Sy != Dy) &

Bs >= 0 & Bs <= Bsk &

(

Bdx = 0 & Bdy = 0 |

(

/* When moving ... */

/* ... is somewhere on the line from src to dest */

(By -Sy)*(Dx-Sx) = (Dy-Sy)*(Bx -Sx) &

/* ... inside the segment between src and dest

NOTE: no vertical movement allowed) */

(Bdx > 0 & Bx >= Sx | Bdx < 0 & Bx <= Sx) &

(Bdx > 0 & Bx <= Dx | Bdx < 0 & Bx >= Dx) &

/* ... is moving along the src -dest line (cross product of velocity

vector and src -dest vector should be 0, i.e. parallel) */

(Dx - Sx) * Bdy - (Dy - Sy) * Bdx = 0

)

) &

(

/* Ball within field boundaries ... */

-F < Bx & Bx < F & -F < By & By < F

)

)

\](

/* Ball stays within field boundaries ... */

-F < Bx & Bx < F & -F < By & By < F

)

}

13

