
15-424: Foundations of Cyber-Physical Systems

Lecture Notes on
Differential & Temporal Logics

André Platzer

Carnegie Mellon University
Lecture 16

1 Introduction

This course is devoted to the study of the Foundations of Cyber-Physical Systems
[Pla12c, Pla12b]. Lecture 3 on Choice & Control explained hybrid programs, a pro-
gram notation for hybrid systems [Pla08, Pla10, Pla12c, Pla12a]. Lecture 4 on Safety &
Contracts defined differential dynamic logic [Pla08, Pla10, Pla12c, Pla12a] as a speci-
fication and verification logic for hybrid programs. Lecture 5 on Dynamical Systems
& Dynamic Axioms and subsequent lectures studied proof principles for differential
dynamic logic with which we can prove correctness properties of hybrid systems. In
your labs, you have demonstrated aptly how you can model, specify, and verify quite
sophisticated and challenging robots.

Yet, there was one rather puzzling phenomenon that we noticed in Lecture 4 only
then did not have a chance to consider any further. For a hybrid program α and differ-
ential dynamic logic formula φ, the modal formula

[α]φ

expresses that all final states reached by all runs of α satisfy the logical formula φ. The
modal formula [α]φ is, consequently, false exactly in those states from which α can reach
a final state that violates the safety condition φ. Yet, what about states from which the
final state reached by running α is safe but some intermediate state along the execution
of α was not safe?

Shouldn’t systems that violate safety conditino φ at an intermediate state be consid-
ered unsafe as well?

The short answer is: that depends.
Does it even make a difference whether we study intermediate states as well or only

worry about final states?

15-424 LECTURE NOTES October 28, 2013 ANDRÉ PLATZER

http://symbolaris.com/course/fcps13.html
http://symbolaris.com/andre.html
http://symbolaris.com/logic/lfcps.html
http://symbolaris.com/course/fcps13/03-choicecontrol.pdf
http://symbolaris.com/course/fcps13/04-contracts.pdf
http://symbolaris.com/course/fcps13/04-contracts.pdf
http://symbolaris.com/course/fcps13/05-dynax.pdf
http://symbolaris.com/course/fcps13/05-dynax.pdf
http://symbolaris.com/course/fcps13/04-contracts.pdf

L16.2 Differential & Temporal Logics

The short answer is again: that depends.
What exactly it depends on and how to systematically approach the general case of

safety throughout the system execution is what today’s lecture studies. The key to the
answer will be understanding the temporal behavior of hybrid programs. The hybrid
trace semantics of hybrid programs will also give us a deeper understanding of the
hybrid aspect of time in hybrid systems.

This lecture is based on [Pla10, Chapter 4], which is a significant extension of [Pla07].

2 Temporalizing Hybrid Systems

In order to be able to distinguish whether a CPS is safe at the end of its run or safe al-
ways throughout its run, differential dynamic logic dLwill be extended with additional
temporal modalities. The resulting logic extends dL and is called differential temporal dy-
namic logic (dTL) [Pla10, Chapter 4]. The modal formula

[α]φ

of dL [Pla08, Pla12c] expresses that all final states reached by all runs of α satisfy the
logical formula φ. The same dL formula [α]φ is allowed in the logic dTL and has the
same semantics [Pla10, Chapter 4]. The new temporal modal dTL formula

[α]�φ

instead, expresses that all states reached all along all traces of α satisfy φ. Those two
modalities can be be used to distinguish systems that are always throughout from those
that are only safe in final states. For example, if the dTL formula

[α]φ ∧ ¬[α]�φ

is true in an initial state ν, then the system α will be safe (in the sense of satisfying φ)
in all final states reached after running α from ν, but is not safe always throughout all
traces of all runs of α from ν. Can that happen?

You should try to answer this question before it is discussed in a later part of these
lecture notes.

3 Syntax of Differential Temporal Dynamic Logic

The differential temporal dynamic logic dTL extends differential dynamic logic [Pla08,
Pla10, Pla12c] with temporal modalities for verifying temporal specifications of hybrid
systems. Hence, dTL has two kinds of modalities:

Modal operators. Modalities of dynamic logic express statements about all possible
behaviour ([α]π) of a system α, or about the existence of a trace (〈α〉π), satisfying
condition π. Unlike in standard dynamic logic, α is a model of a hybrid system.

15-424 LECTURE NOTES ANDRÉ PLATZER

Differential & Temporal Logics L16.3

The logic dTL uses hybrid programs to describe α as in previous lectures. Yet,
unlike in standard dynamic logic [HKT00] or dL, π is a trace formula in dTL, and π
can refer to all states that occur during a trace using temporal operators.

Temporal operators. For dTL, the temporal trace formula �φ expresses that the for-
mula φ holds all along a trace selected by [α] or 〈α〉. For instance, the state for-
mula 〈α〉�φ says that the state formula φ holds at every state along at least one
trace of α. Dually, the trace formula ♦φ expresses that φ holds at some point dur-
ing such a trace. It can occur in a state formula 〈α〉♦φ to express that there is such
a state in some trace of α, or as [α]♦φ to say that along each trace there is a state
satisfying φ. The primary focus of attention in today’s lecture is on homogeneous
combinations of path and trace quantifiers like [α]�φ or 〈α〉♦φ.

The formulas of dTL are defined similarly to differential dynamic logic. However,
the modalities [α] and 〈α〉 accept trace formulas that refer to the temporal behavior of
all states along a trace. Inspired by CTL and CTL∗ [EC82, EH86], dTL distinguishes
between state formulas, which are true or false in states, and trace formulas, which
are true or false for system traces. The sets Fml of state formulas and FmlT of trace
formulas with variables in Σ are simultaneously inductively defined in Def. 1.

Definition 1 (dTL formula). The (state) formulas of differential temporal dynamic logic
(dTL) are defined by the grammar (where φ, ψ are dTL state formulas, π is a dTL
trace formula, θ1, θ2 (polynomial) terms, x a variable, α a HP):

φ, ψ ::= θ1 = θ2 | θ1 ≥ θ2 | ¬φ | φ ∧ ψ | φ ∨ ψ | φ→ ψ | ∀xφ | ∃xφ | [α]π | 〈α〉π

The trace formulas of dTL are defined by the grammar (where φ is a dTL state for-
mula):

π ::= φ | �φ | ♦φ

Operators >,≤, <,↔ can be defined as usual, e.g., φ↔ ψ ≡ (φ→ ψ) ∧ (ψ → φ).

Formulas without � and ♦ are nontemporal formulas and have the same semantics as
the corresponding dL formulas. Unlike in CTL, dTL state formulas are true on a trace if
they hold for the last state of a trace, not for the first. Thus, dTL formula [α]φ expresses
that φ is true at the end of each trace of α, which is the same as the dL formula [α]φ. In
contrast, [α]�φ expresses that φ is true all along all states of every trace of α. This com-
bination gives a smooth embedding of nontemporal dL into dTL and makes it possible
to define a compositional calculus. Like CTL, dTL allows nesting with a branching time
semantics [EC82], e.g., [α]�(x ≥ 2→ 〈β〉♦x ≤ 0).

4 Trace Semantics of Hybrid Programs

In differential dynamic dL [Pla08, Pla12c] from Lecture 4, modalities only refer to the
final states of system runs and the semantics is a reachability relation on states: State ω

15-424 LECTURE NOTES ANDRÉ PLATZER

http://symbolaris.com/course/fcps13/04-contracts.pdf

L16.4 Differential & Temporal Logics

is reachable from state ν using system α if there is a run of α which terminates in ω
when started in ν. For dTL, however, formulas can refer to intermediate states of runs
as well. To capture this, we change the semantics of a hybrid system α to be the set of
its possible traces, i.e., successions of states that occur during the evolution of α. The
relation between the initial and the final state alone is not sufficient.

States define the values of system variables during a hybrid evolution. A state is a
map ν : Σ→ R. In addition, we distinguish a separate state Λ to denote the failure of a
system run when it is aborted due to a test ?χ that yields false . In particular, Λ can only
occur at the end of an aborted system run and marks that no further extension of that
trace is possible because of a failed test. The set of all states is denoted by S.

Hybrid systems evolve along piecewise continuous traces in multi-dimensional space
as time passes. Continuous phases are governed by differential equations, whereas dis-
continuities are caused by discrete jumps in state space. Unlike in discrete cases [Pra79,
BS01], traces are not just sequences of states, since hybrid systems pass through un-
countably many states even in bounded time. Beyond that, continuous changes are
more involved than in pure real time [ACD90, HNSY92], because all variables can
evolve along differential equations with different slopes. Generalizing the real-time
traces of [HNSY92], the following definition captures hybrid behaviour by splitting the
uncountable succession of states into periods σi that are regulated by the same control
law. For discrete jumps, some of those periods are point flows of duration 0.

The (trace) semantics of hybrid programs is compositional, that is, the semantics of
a complex program is defined as a simple function of the trace semantics of its parts.
What a hybrid trace captures is the full temporal evolution of a hybrid system. Hybrid
systems can behave in different ways, so their trace semantics will be a set of hybrid
traces, each of which describes one particular temporal evolution over time. Time,
however, is hybridized to a pair (i, ζ) of a discrete time index i ∈ N and a real time
point ζ ∈ R. A single time component ζ ∈ R itself would an inadequate model of
time for hybrid systems, because hybrid systems can make progress by a discrete tran-
sition without continuous time passing. That happens whenever discrete controls take
action. Continuous time only passes during continuous evolutions along differential
equations. Discrete actions only make discrete time index i pass.

Definition 2 (Hybrid trace). A trace is a (nonempty) finite or infinite sequence
σ = (σ0, σ1, σ2, . . .) of functions σi : [0, ri]→ Swith their respective durations ri ∈ R
(for i ∈ N). A position of σ is a pair (i, ζ) with i ∈ N and ζ in the interval [0, ri]; the
state of σ at (i, ζ) is σi(ζ). Positions of σ are ordered lexicographically by (i, ζ) ≺ (j, ξ)
iff either i < j, or i = j and ζ < ξ. Further, for a state ν ∈ S, ν̂ : 0 7→ ν is the point
flow at ν with duration 0. A trace terminates if it is a finite sequence (σ0, σ1, . . . , σn)
and σn(rn) 6= Λ. In that case, the last state σn(rn) is denoted by lastσ. The first
state σ0(0) is denoted by firstσ.

Unlike in [ACD90, HNSY92], the definition of traces also admits finite traces of bounded
duration, which is necessary for compositionality of traces in α;β. The semantics of

15-424 LECTURE NOTES ANDRÉ PLATZER

Differential & Temporal Logics L16.5

hybrid programs α as the set τ(α) of its possible traces depends on valuations [[·]]ν of
formulas and terms at intermediate states ν. The valuation of terms and interpretations
of function and predicate symbols are as for real arithmetic (Lecture 4). The valuation
of formulas will be defined in Def. 6. Again, we use νdx to denote the modification that
agrees with state ν on all variables except for the symbol x, which is changed to d ∈ R.

Definition 3 (Trace semantics of hybrid programs). The trace semantics, τ(α), of a
hybrid program α, is the set of all its possible hybrid traces and is defined induc-
tively as follows:

1. τ(x := θ) = {(ν̂, ω̂) : ω = ν except that [[x]]ω = [[θ]]ν for ν ∈ S}

2. τ(x′ = θ&H) = {(ϕ) : ϕ(t) |= x′ = θ and ϕ(t) |= H for all 0 ≤ t ≤ r for a so-

lution ϕ : [0, r]→ S of any duration r}; i.e., with ϕ(t)(x′)
def
= dϕ(ζ)(x)

dζ (t), ϕ
solves the differential equation and satisfies H at all times, see Lecture 2.

3. τ(?χ) = {(ν̂) : [[χ]]ν = true} ∪ {(ν̂, Λ̂) : [[χ]]ν = false}

4. τ(α ∪ β) = τ(α) ∪ τ(β)

5. τ(α;β) = {σ ◦ ς : σ ∈ τ(α) , ς ∈ τ(β) when σ ◦ ς is defined};
the composition of σ = (σ0, σ1, σ2, . . .) and ς = (ς0, ς1, ς2, . . .) is

σ ◦ ς :=

(σ0, . . . , σn, ς0, ς1, . . .) if σ terminates at σn and lastσ = first ς

σ if σ does not terminate
not defined otherwise

6. τ(α∗) =
⋃
n∈N τ(α

n), where αn+1 := (αn;α) for n ≥ 1, as well as α1 := α and
α0 := (?true).

Time passes differently during discrete and continuous change. During continuous
evolution, the discrete step index i of positions (i, ζ) remains constant, whereas the
continuous duration ζ remains 0 during discrete point flows. This permits multiple
discrete state changes to happen at the same (super-dense) continuous time, unlike in
other approaches [ACD90].

Example 4. For comparing the transition semantics of hybrid programs for dL from
Lecture 3 and the trace semantics of hybrid programs for dTL from Def. 3, consider the
following simple hybrid program α:

a :=−2a; a := a2.

The transition semantics is just the relation between initial and final states:

ρ(α) ≡ {(ν, ω) : ω is like ν except that ω(a) = 4ν(a)2}.

15-424 LECTURE NOTES ANDRÉ PLATZER

http://symbolaris.com/course/fcps13/04-contracts.pdf
http://symbolaris.com/course/fcps13/02-diffeq.pdf
http://symbolaris.com/course/fcps13/03-choicecontrol.pdf

L16.6 Differential & Temporal Logics

In particular, the dL formula [α]a ≥ 0 is valid, because all final states have a square as
the value of a. In contrast, the trace semantics of α retains all intermediate states:

τ(α) ≡ {(ν̂, ŝ, ω̂) : s is like ν except s(a) = −2ν(a)

and ω is like s except ω(a) = s(a)2 = 4ν(a)2}.

During these traces, a ≥ 0 does not hold at all states. If the trace starts with a positive
value (ν |= a > 0), then it will become negative at the point flow s (where s |= a < 0),
yet recover to a positive value (ω |= a > 0) at the end.

Example 5. The previous example only had discrete jumps, and, thus, the traces only
involved point flows. Now consider the hybrid program β from the train context:

a :=−b; z′ = v, v′ = a; ?v ≥ 0; a :=A; z′ = v, v′ = a.

The transition semantics of this program only considers successful runs to completion.
In particular, if A > 0, the velocity v will always be nonnegative at the end (otherwise
the test ?v ≥ 0 in the middle fails and the program aborts), because the last differential
equation will accelerate and increase the velocity again. Thus, the position z at the end
of the program run will never be smaller than at the beginning.

If, instead, we consider the trace semantics of β, all intermediate states are in the set
of traces:

τ(β) ≡ {(µ̂0, µ̂1, ϕ1, µ̂2, µ̂3, ϕ2) : µ1 = µ0[a 7→ −µ0(b)] and
ϕ1 is a state flow of some duration r1 ≥ 0 with ϕ1 |= z′ = v ∧ v′ = a

starting in ϕ1(0) = µ1 and ending in a state with ϕ1(r1)(v) ≥ 0

and µ2 = ϕ1(r1), µ3 = ϕ1(r1)[a 7→ ϕ1(r1)(A)] and
ϕ2 is a state flow of some duration r2 ≥ 0 with ϕ2 |= z′ = v ∧ v′ = a

starting in ϕ2(0) = µ3 and ending in state ϕ2(r2)}
∪ {(µ̂0, µ̂1, ϕ1, µ̂2, Λ̂) : µ1 = µ0[a 7→ −µ0(b)] and

ϕ1 is a state flow of some duration r ≥ 0 with ϕ1 |= z′ = v ∧ v′ = a

starting in ϕ1(0) = µ1 and ending in a state with ϕ1(r)(v) < 0

further µ2 = ϕ1(r)}.

The first set is the set of traces where the test ?v ≥ 0 in the middle succeeds and the
system continues. The second set (after the union) is the set of traces that are aborted
with Λ̂ during their execution, because the middle test fails. Note that the traces in the
first set have two continuous flows ϕ1, ϕ2 and four point flows µ̂0, µ̂1, µ̂2, µ̂3 in each
trace. The traces in the second set have only one continuous flow ϕ1 and three point
flows µ̂0, µ̂1, µ̂2, because the subsequent aborting point flow Λ̂ does not terminate and
aborts all further execution. In the trace semantics, v < 0 is possible in the middle of
some traces, which is a fact that the transition semantics does not notice. Combining
traces for α ∪ β, that is, for

(a :=−2a; a := a2) ∪ (a :=−b; z′ = v, v′ = a; ?v ≥ 0; a :=A; z′ = v, v′ = a)

15-424 LECTURE NOTES ANDRÉ PLATZER

Differential & Temporal Logics L16.7

is just the union τ(α) ∪ τ(β) of the traces τ(α) and τ(β) from Examples 4 and 5. Note
that a ≤ 0 will hold at least once during every trace of α∪ β, either in the beginning, or
after setting a :=−2a or a :=−b, respectively, when we assume b > 0.

5 Semantics of State and Trace Formulas

In the semantics of dTL formulas, the dynamic modalities determine the set of traces
according to the trace semantics of hybrid programs, and, independently, the tempo-
ral modalities determine at which points in time the respective postcondition needs
to hold. The semantics of formulas is compositional and denotational, that is, the se-
mantics of a complex formula is defined as a simple function of the semantics of its
subformulas.

15-424 LECTURE NOTES ANDRÉ PLATZER

L16.8 Differential & Temporal Logics

Definition 6 (dTL semantics). The satisfaction relationν |= φ for a dTL (state) for-
mula φ in state ν is defined inductively:

• ν |= (θ1 = θ2) iff [[θ1]]ν = [[θ2]]ν .

• ν |= (θ1 ≥ θ2) iff [[θ1]]ν ≥ [[θ2]]ν .

• ν |= ¬φ iff ν 6|= φ, i.e. if it is not the case that ν |= φ.

• ν |= φ ∧ ψ iff ν |= φ and ν |= ψ.

• ν |= φ ∨ ψ iff ν |= φ or ν |= ψ.

• ν |= φ→ ψ iff ν 6|= φ or ν |= ψ.

• ν |= φ↔ ψ iff (ν |= φ and ν |= ψ) or (ν 6|= φ and ν 6|= ψ).

• ν |= ∀xφ iff νdx |= φ for all d ∈ R.

• ν |= ∃xφ iff νdx |= φ for some d ∈ R.

• ν |= [α]π iff for each trace σ ∈ τ(α)that starts in firstσ = ν, if [[π]]σ is defined,
then [[π]]σ = true .

• ν |= 〈α〉π iff there is a trace σ ∈ τ(α) starting in firstσ = ν such that [[π]]σ is
defined and [[π]]σ = true .

For trace formulas, the valuation [[·]]σ with respect to trace σ is defined inductively
as:

1. If φ is a state formula, then [[φ]]σ = [[φ]]lastσ if σ terminates, whereas [[φ]]σ is not
defined if σ does not terminate.

2. [[�φ]]σ = true iff σi(ζ) |= φ holds for all positions (i, ζ) of σ with σi(ζ) 6= Λ.

3. [[♦φ]]σ = true iff σi(ζ) |= φ holds for some position (i, ζ) of σ with σi(ζ) 6= Λ.

As usual, a (state) formula is valid if it is true in all states. If ν |= φ, then we say that
dTL state formula φ is true at ν or that ν is a model of φ. A (state) formula φ is valid,
written � φ, iff ν |= φ for all states ν. A formula φ is a consequence of a set of formulas
Γ, written Γ � φ, iff, for each ν: (ν |= ψ for all ψ ∈ Γ) implies that ν |= φ. Likewise, for
trace formula π and trace σ we write σ |= π iff [[π]]σ = true and σ 6|= π iff [[π]]σ = false . In
particular, we only write σ |= π or σ 6|= π if [[π]]σ is defined, which it is not the case if π
is a state formula and σ does not terminate. The points where a dTL property φ has to
hold for the various combinations of temporal and dynamic modalities are illustrated
in Fig. 1.

15-424 LECTURE NOTES ANDRÉ PLATZER

Differential & Temporal Logics L16.9

ν

[α]�φ

�φ
φ

φ
φ

�φ
φ φ φ

�φ
φ

φ
φ

ν

〈α〉♦φ
♦φ

φ

ν

[α]♦φ

♦φ

φ

♦φ
φ

♦φφ

ν

〈α〉�φ
�φ

φ φ φ

ν

ω1

ωn

ω2

[α]φ

φ

φ

φ

ν ω

〈α〉φ φ

Figure 1: Trace semantics of dTL formulas

15-424 LECTURE NOTES ANDRÉ PLATZER

L16.10 Differential & Temporal Logics

6 Conservative Temporal Extension

The following result shows that the extension by temporal operators that dTL provides
does not change the meaning of nontemporal dL formulas. The trace semantics given
in Def. 6 is equivalent to the final state reachability relation semantics given in Lecture
4 for the sublogic dL of dTL.

Proposition 7 (Conservative temporal extension [Pla10, Proposition 4.1]). The logic dTL
is a conservative extension of nontemporal dL, i.e., the set of valid dL formulas is the same
with respect to transition reachability semantics of dL (Lecture 4) as with respect to the trace
semantics of dTL (Def. 6).

The proof is by induction using that the reachability relation fits to the trace seman-
tics. That is, the reachability relation semantics of hybrid programs agrees with the first
and last states of the traces in the trace semantics.

Lemma 8 (Trace relation [Pla10, Lemma 4.1]). For hybrid programs α:

ρ(α) = {(firstσ, lastσ) : σ ∈ τ(α) terminates}.

In particular, the trace semantics from today’s lecture fits seamlessly to the original
reachability semantics that was the basis for the previous lectures. The trace seman-
tics exactly satisfies the objective of characterizing the same reachability relation be-
tween initial and final states, while, in addition, keeping a trace of all intermediate
states around. For nontemporal dTL formulas and for dL formulas, this full trace with
intermediate states is not needed, because the reachability relation between initial and
final states is sufficient to define the meaning For temporal dTL formulas, instead, the
trace is crucial to give a meaning to � and ♦.

7 Summary

This lecture introduced a temporal extension of the logic dL and a trace semantics of
hybrid programs. This extends the syntax and semantics to the presence of temporal
modalities. The next lecture investigates how to prove temporal properties of hybrid
systems.

Exercises

Exercise 1. Can you give a formula of the following form that is valid?

[α]�φ ∧ ¬[α]φ

Exercise 2. In which case does the temporal [α]�φ differ from the nontemporal [α]φ.

15-424 LECTURE NOTES ANDRÉ PLATZER

http://symbolaris.com/course/fcps13/04-contracts.pdf
http://symbolaris.com/course/fcps13/04-contracts.pdf
http://symbolaris.com/course/fcps13/04-contracts.pdf

Differential & Temporal Logics L16.11

References

[ACD90] Rajeev Alur, Costas Courcoubetis, and David L. Dill. Model-checking for
real-time systems. In LICS, pages 414–425. IEEE Computer Society, 1990.

[BS01] Bernhard Beckert and Steffen Schlager. A sequent calculus for first-order
dynamic logic with trace modalities. In Rajeev Goré, Alexander Leitsch,
and Tobias Nipkow, editors, IJCAR, volume 2083 of LNCS, pages 626–641.
Springer, 2001.

[DBL12] Proceedings of the 27th Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS 2012, Dubrovnik, Croatia, June 25–28, 2012. IEEE, 2012.

[EC82] E. Allen Emerson and Edmund M. Clarke. Using branching time tempo-
ral logic to synthesize synchronization skeletons. Sci. Comput. Program.,
2(3):241–266, 1982.

[EH86] E. Allen Emerson and Joseph Y. Halpern. “Sometimes” and “Not Never”
revisited: on branching versus linear time temporal logic. J. ACM, 33(1):151–
178, 1986.

[HKT00] David Harel, Dexter Kozen, and Jerzy Tiuryn. Dynamic logic. MIT Press,
2000.

[HNSY92] Thomas A. Henzinger, Xavier Nicollin, Joseph Sifakis, and Sergio Yovine.
Symbolic model checking for real-time systems. In LICS, pages 394–406.
IEEE Computer Society, 1992.

[Pla07] André Platzer. A temporal dynamic logic for verifying hybrid sys-
tem invariants. In Sergei N. Artëmov and Anil Nerode, editors, LFCS,
volume 4514 of LNCS, pages 457–471. Springer, 2007. doi:10.1007/

978-3-540-72734-7_32.

[Pla08] André Platzer. Differential dynamic logic for hybrid systems. J. Autom.
Reas., 41(2):143–189, 2008. doi:10.1007/s10817-008-9103-8.

[Pla10] André Platzer. Logical Analysis of Hybrid Systems: Proving Theorems
for Complex Dynamics. Springer, Heidelberg, 2010. doi:10.1007/

978-3-642-14509-4.

[Pla12a] André Platzer. The complete proof theory of hybrid systems. In LICS
[DBL12], pages 541–550. doi:10.1109/LICS.2012.64.

[Pla12b] André Platzer. Dynamic logics of dynamical systems. CoRR, abs/1205.4788,
2012. arXiv:1205.4788.

[Pla12c] André Platzer. Logics of dynamical systems. In LICS [DBL12], pages 13–24.
doi:10.1109/LICS.2012.13.

15-424 LECTURE NOTES ANDRÉ PLATZER

http://dx.doi.org/10.1007/978-3-540-72734-7_32
http://dx.doi.org/10.1007/978-3-540-72734-7_32
http://dx.doi.org/10.1007/s10817-008-9103-8
http://dx.doi.org/10.1007/978-3-642-14509-4
http://dx.doi.org/10.1007/978-3-642-14509-4
http://dx.doi.org/10.1109/LICS.2012.64
http://arxiv.org/abs/1205.4788
http://dx.doi.org/10.1109/LICS.2012.13

L16.12 Differential & Temporal Logics

[Pra79] Vaughan R. Pratt. Process logic. In POPL, pages 93–100, 1979.

15-424 LECTURE NOTES ANDRÉ PLATZER

	Introduction
	Temporalizing Hybrid Systems
	Syntax of Differential Temporal Dynamic Logic
	Semantics
	Semantics of State and Trace Formulas
	Conservative Temporal Extension
	Summary

