
Lecture Notes on
Alias Analysis

15-411: Compiler Design
André Platzer

Lecture 26

1 Introduction

So far we have seen how to implement and compile programs with point-
ers, but we have not seen how to optimize any expressions involving point-
ers. For primitive scalar type variables, we can easily see if x and y repre-
sent the same memory (or register) location. They represent the same lo-
cation (and will thus always be guaranteed to hold the same value) if and
only if x and y are the same variable. For instance we can optimize by
constant propagation

x=1; y=2; z=x  x=1; y=2; z=1

We would like to be able to constant propagate also in the presence of point-
ers:

*x=1; *y=2; z=*x  ??? *x=1; *y=2; z=1 ???

x−>f=1; y−>f=2; z=x−>f  ??? x−>f=1; y−>f=2; z=1 ???

In the presence of pointers, this reasoning breaks down, however, because
two syntactically different pointers p and q may still hold the same memory
address, so if we dereference p (e.g., when changing ∗p = 5) then we might
have changed the contents ∗q of q without touching q itself syntactically,
just based on the fact that p and q happen to hold the same address at the
moment. Names do not denote memory addresses any more, but now they
only denote access paths to addresses. Two different access paths, how-
ever, may still end up in the same address. This is the most fundamental
question for any optimizations called aliasing problem.

For more information on alias analysis also see [ALSU06, Ch 12.2-12.5]
and [App98, Ch 17.5.].

LECTURE NOTES



L26.2 Alias Analysis

2 Interprocedurality

Successful alias analysis often has to be interprocedural, because, other-
wise, we have to assume that every function call could have changed all
memory contents arbitrarily. C0 is nice in that it does not have function
pointer calls and no virtual method dispatch. So at least we know directly
which function could possibly be called. In object-oriented programming
languages like Java, we can have

Object o;
...
o = new Component();
...
String s = o.toString();
...

If we do not keep track of what kind of objects o could refer to, we would
have to expect that any effect of any toString() implementation could hap-
pen at the assignment to s. If we know all possible points to information
about o then we can do better. In other words, interprocedural analysis and
points to analysis are interrelated in languages with indirect function calls.

3 May Point To Analysis

The general question is what the objects on the heap are that a variable p
of pointer type τ∗ could possibly point to. There are several choices for
pointer analysis. We choose to track if p can point to a heap object h. Yet,
we do not explicitly track all the heap objects during compiler optimiza-
tions. Instead, we, for instance, choose to throw all objects created at one
statement h together and track only if p can point to any of the heap objects
created at statement h. That is, we use allocation site analysis, where the
allocation site is the abstraction primitive.

Whenever we find a pointer assignment q = pwe need to track how the
possible points-tos of p relate to those of q. In what is called inclusion-based
analysis, q = p will have the effect in our analysis that q may point to all
objects that p may point to (but not the other way around). In equivalence-
based analysis, q = p would instead merge the points-tos of p and q into one
common equivalence class. Equivalence-based analysis is not particularly
useful for alias analysis, because it merges too much information. But it can
be useful to determine which variables point to the same kind of objects,

LECTURE NOTES



Alias Analysis L26.3

because it directly tracks equivalence classes. In practice, inclusion-based
points-to analysis is expensive but tends to get reasonably good results.

We write points(x,X) if the variable x may point to a heap object X .
Here we decide to classify heap objects by their allocation site, i.e., the line
of code that was used when creating them. That is, we write points(x, l)
if the variable x may point to a heap location created at statement l. The
first rule says that a memory allocation at statement l obviously causes the
target to point to a memory allocation allocated at l:

l : x = alloc(τ)

points(x, l)
PN

From now on, we do not really care what a heap object X is. Rule PN

seeds them from allocation sites, but other more precise analyses would be
possible too, like for instance allocation site plus call site to track where the
function allocating x has been called from. This is useful if all objects of a
type are allocated in an object factory function like

node* newListNode(int value) {
node *p = alloc(node);
p->v=value;
return p;

}

In inclusion-based analysis, if we assign x = y then x may point to any
heap object Y that y may point to:

l : x = y points(y, Y )

points(x, Y )
PC

This is an example where we loose information by abstraction and by track-
ing globally and in ignorance of the context what variables x may point to.
Because any information we still have about points(x, Z) from prior lines
of code is still around, but no longer of relevance for code dominated by
this assignment x = y. Flow-sensitive analysis could do better here, but is
computationally more expensive, possibly much more expensive.

Suppose we update a pointer field of a pointer by x−>f = y. Then if
x may point to X and y may point to Y then the f field of X may point to
Y : We introduce the notation mpoints(l, f, l′) if the field f of a struct that
has been created in heap memory at program location l can point to a heap

LECTURE NOTES



L26.4 Alias Analysis

memory location that has been created at program location l′.

l : x−>f = y points(x,X) points(y, Y )

mpoints(X, f, Y )
PS

(Note that we could work with optimizations that change the memory state
deterministically if we happen to know that x may point to exactly one X
and nowhere else). Likewise when we read a pointer field x = y−>f , then
if y may point to Y and the f field of Y may point to X then x may now
point to X :

l : x = y−>f points(y, Y ) mpoints(Y, f,X)

points(x,X)
PL

4 Type-Based Analysis

The general question is what the objects on the heap are that a variable p
of pointer type τ∗ could possibly point to. In C, we do not know a whole
lot about that a priori without doing extensive analysis. And even then it
is quite difficult to figure out what p may point to.

In C0, we have a secret weapon. The language is type-safe. At least
know that, at any time, p : τ∗ can only point to objects of type τ . Type-
preservation implies that, whenever e is an expression of type τ , then all
evaluation of e by e⇒ v can only yield values v of type τ . Especially, since
∗p is an expression of type τ , p will point to an object of type τ . When
comparing p : τ∗ to a pointer q : σ∗ to a different type (and disjoint type
for object-types) σ 6= τ , then we immediately know that they cannot alias.
We write ¬aliasable(e, e′), if e and e′ cannot possibly be aliases, because the
types mismatch. We write aliasable(e, e′) if, indeed, for all we know from a
type perspective, e and e′ could still alias, but the points-to analysis might
be able to tell us more. To make it more explicit when two pointer expres-
sions can alias and when they cannot, we state the positive and negative
rule:

e : τ ∗ e′ : τ∗
aliasable(e, e′)

P+
∗

e : τ ∗ e′ : σ ∗ σ 6= τ disjoint

¬aliasable(e, e′)
P−∗

That is, if expressions e and e′ have the same pointer type τ∗, then they
can alias. If expression e has type τ∗ and expression e′ has different type
σ∗ (and σ 6= τ are disjoint types), then they cannot alias. Note that, when

LECTURE NOTES



Alias Analysis L26.5

including other analyses, there could be other reasons denying aliasability
(see last sections), but they are not just based on the types. For polymorphic
languages where types can overlap (e.g., a String is an Object), aliasability
is handled similarly, but there are more cases, because types can be different
but still not disjoint.

Note that, for this to work out, we also need to know that C0, unlike
C, does not allow arbitrary memory references converted from non-pointer
data (e.g., ints) or pointer arithmetic, because those would spoil type-safety.
C0 also does not have an address-of operator &e that would allow to obtain
a pointer to an arbitrary location e.

The C0 type system guarantees that we know something about what a
struct field access can alias with. It can only alias with the same field of the
same struct, nothing else.

e : struct s e′ : struct s aliasable(e, e′)

aliasable(e.a, e′.a)
P+
.

e : struct s e′ : struct t s 6= t

¬aliasable(e.a, e′.a)
P−.

A field access e.a can only alias with a field access e′.a if e and e′ are
aliasable and both have the same struct type.

C0 array access e[i] can only alias with array access e′[i] if e and e′ alias
and have the same type (and i == j, which is a dynamic quantity that is
difficult to decide at compile time).

e : τ [] e′ : τ [] aliasable(e, e′)

aliasable(e[i], e′[j])
P+
[]

e : τ [] e′ : σ[] σ 6= τ

¬aliasable(e[i], e′[j])
P−[]

When two local variables int a[]; and int b[]; have been allocated
with different names at different allocation sites, they can never alias, since
array assignment . That is a[i] and b[j] are always different. Note that
int a[] and int b[] could alias if they are function parameters, because
we cannot prevent anyone from passing the same array twice as a function
parameter. When one of the two is a function parameter and the other one
is allocated locally, then at least we know that they will be different, because
newly allocated arrays cannot alias with previously existing arrays.

5 Combining Type-Based Analysis and May Point To
Analysis

When we have information about two expressions e and f that cannot pos-
sibly alias, then we know that whatever e may point to cannot be what f

LECTURE NOTES



L26.6 Alias Analysis

may point to:

¬aliasable(e, f) points(e, E)

¬points(f,E)
A???

But now we have multiple rules that can conclude whether points(f,E)
holds or not! Previous rules conclude positive statements but rule A???
concludes a negative statement. In previous lectures, whenever we had a
negative fact, there was a good reason why we could use it. One reason
was, because it never occurs in positive form, then we can just rename the
negative predicate ¬p(x) to the positive predicate pnot(x). If the predicate
occurs both positively and negatively, then the other reason why the rules
still worked in previous lectures was that there was a way to stratify the
rules into two sets of rules such that the first can saturate the predicate with
only positive occurrences and after that the second set can use negative
occurrences but never produce new instances of that particular predicate.

Here the situation is different. The rules all produce points conclusions
and could thus possibly contradict each other. The question is whether we
could possibly conclude both points(f,E) and ¬points(f,E) for then we
would have inconsistent rules. This would be terrible, so we cannot just
use arbitrary negations in logic programming rule without thinking about
it carefully.

What saves us now is precedence. We have two separate analysis rea-
sons, and if both typing and points-to analysis tell us something then the
typing information should take precedence. The first attempt of getting
this right is that let rule A??? overwrite conflicting points(f,E) informa-
tion. Hence, the negative conclusion takes precedence over positive facts
in the database in order to maintain consistency. But that doesn’t quite
work. In particular, if we have reason to believe that e may point to E, i.e.,
points(e, E), and also that f may point toE, i.e., points(f,E), then we could
use rule A??? both ways to derive either ¬points(f,E) or ¬points(e, E).
Which one do we remove? The answer might be arbitrary and at least de-
pends on how we derived the facts. This is getting too tricky and subtle to
get right easily. The branch of logic that deals with facts that come and go
and are made consistent again by various notions of precedence is called
nonmonotonic logic. But we are looking for an easier answer.

Instead, what we will do is not even derive points(f,E) facts in the
first place, if they would contradict what we can conclude from the typing
information about possible aliasability. We achieve this by adding an extra
assumption to all points to rules that checks if the conclusion would make

LECTURE NOTES



Alias Analysis L26.7

sense from a type perspective:

l : x = y points(y, Y ) aliasable(x, y)

points(x, Y )
P+
C

This rule makes sense. If y may point to Y and we assign x = y then x may
also point to Y if both are aliasable, that is, unless we know that x cannot
alias y.

6 Points-to Analysis and Types

The points-to analysis is entirely ignorant of typing information. It may
conclude possible point-tos that cannot happen because of a type mismatch.
We can directly integrate points-to analysis and types on the usual cases.
In order to take types into account, we use a predicate mtype(X, τ) that
specifies for a heap object X what type it has. If the type is not known pre-
cisely, some conservative overapproximation would be used, e.g., the most
specific type in common when the type system forms a lattice. We write
mtype(X, τ≤) if the type of heap object X is type τ or one of its subtypes
σ ≤ τ . For instance, in Java, mtype(X,Number≤) would be the disjunction

mtype(X, Integer)∨mtype(X,F loat)∨mtype(X,BigInteger)∨mtype(X,BigDecimal)∨...

l : x = alloc(τ)

points(x, l)
mtype(l, τ)

PN

l : x = y x : τ points(y, Y ) mtype(Y, τ≤)

points(x, Y )
PC

l : x−>f = y points(x,X) points(y, Y ) mtype(X, s≤) struct s {. . . τf} mtype(Y, τ≤)

mpoints(X, f, Y )
PS

l : x = y−>f x : τ points(y, Y ) mpoints(Y, f,X) mtype(X, τ≤)

points(x,X)
PL

7 Outlook

Memory analyses like alias analysis and points-to have a big impact, but are
also very expensive, computationally, and consumes even more memory.

LECTURE NOTES



L26.8 Alias Analysis

Often, it is a good idea to run a cheap memory analysis, e.g., only based
on types and allocation sites. If time is left, then run a better analysis with
types, allocation sites, and 1 level of call sites, etc.

Memory SSA is a form of SSA in which the memory state is tracked
explicitly as an abstract variable along load and store and alloc operations.
When control flow merges, the memory state M is subject to a Φ function
M5 := Φ(M1,M4), except that it disappears during DeSSA, because the
memory implements it, instead of register swaps.

Quiz

1. Define a variation of the rules presented here such that you have one
parameter with which you can tune the precision of the analysis up
and down, depending on how long it takes to complete the analysis.

2. When doing memory analyses and you have spare time left, do you
need to throw earlier results away to do the next pass? Or can you
bootstrap from previous information? If so, how? If not, why.

References

[ALSU06] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ull-
man. Compilers: Principles, Techniques, and Tools. Addison-
Wesley Longman, Boston, MA, USA, 2nd edition, 2006.

[App98] Andrew W. Appel. Modern Compiler Implementation in ML. Cam-
bridge University Press, Cambridge, England, 1998.

LECTURE NOTES


	Introduction
	Interprocedurality
	May Point To Analysis
	Type-Based Analysis
	Combining Type-Based Analysis and May Point To Analysis
	Points-to Analysis and Types
	Outlook

