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1 Introduction

We have seen numerous dataflow analyses in class. They have a lot more
in common than one might think. In this lecture we systematically de-
velop what is common to dataflow analysis and then build up a common
framework next time. More information on dataflow analysis and mono-
tone frameworks can be found in [NNH99].

2 Forward May Dataflow Analysis

A forward may dataflow analysis follows the principle shown in Fig. 1.
There, A◦(l) is the information that holds at the entry of a block and

we compute it as a union of all that may hold at the previous blocks. Thus
A◦(l) will hold anything that may hold at any previous block. A•(l) is the
information that holds at the exit of a block. kill(l) holds the information
that we remove from the input. gen(l) holds the information that we add to
the input. We compute A•(l) as a function of the information A◦(l) holding
at the entry, minus those that we remove (kill(l)) plus those that we add
(gen(l)).

If we choose ι = ∅ for a may analysis, we obtain the least fixed point.
Recall, for example, the reaching definitions analysis, which is a for-

ward may analysis with the choice in Table 1. It analyses which assign-
ments may have been made before but have not been overwritten yet.
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· · ·
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li 7→l

A•(li)

A•(l) = (A◦(l) \ kill (l)) ∪ gen(l)

A•(init) = c

Figure 1: Dataflow analysis schema for forward may analysis

Table 1: Forward may analysis definitions for reaching definitions

Statement l gen(l) kill(l)

init A•(init) = Lbl
l : x← a� b {l} {l : def(l, x)}
l : x← ∗a {l} {l : def(l, x)}
l : ∗a← b ∅ ∅
goto l′ ∅ ∅
if a > b goto l′ ∅ ∅
l′ : ∅ ∅
l : x← f(p1, . . . , pn) {l} {l : def(l, x)}

3 Forward Must Dataflow Analysis

Forward may dataflow analysis looks for information that may hold on
some of the paths. If, instead, we need information about something that
must hold on all of the paths, we use a forward must dataflow analysis
instead (Figure 2). If we choose ι as everything for a must analysis, we
obtain the greatest fixed point.

Recall, for instance, the dataflow equations for the available expres-
sion analysis from the optimization lecture, which we show again in Ta-
ble 2. Other forward must analysis includes dominator analysis to deter-
mine which statements dominate the program point, i.e., must have been
executed before.
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Figure 2: Dataflow analysis schema for forward must analysis

Table 2: Forward must analysis definitions for available expressions (recall)

Statement l gen(l) kill(l)

init A•(init) = ∅
x← a� b {a� b, a, b} \ kill(l) {e : e contains x}
x← ∗a {∗a} \ kill(l) {e : e contains x}
∗a← b ∅ {∗z : for all z}
goto l′ ∅ ∅
if a > b goto l′ ∅ ∅
l′ : ∅ ∅
x← f(p1, . . . , pn) ∅ {e : e contains x or is ∗ z}

4 Backward May Dataflow Analysis

Following the control flow forward is not the only direction that makes
sense. Backward dataflow analysis follows the control flow backwards in-
stead. It again comes in two flavors: backward may and backward must
dataflow analysis. For backward dataflow analysis, we no longer initialize
the analysis at the initial node, but at all final nodes instead, because we
follow the control flow backwards from the final nodes to the beginning.

Live variable analysis is an example of a backward may analysis (Fig-
ure 3), i.e., which variables may be live, i.e., there is a path to a use without
redefinition. See Table 3.
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Figure 3: Dataflow analysis schema for backward may analysis

Table 3: Backward may analysis definitions for live variables

Statement l gen(l) kill(l)

final A•(final) = ∅
x← a� b {a, b} {x}
x← ∗a {a} {x}
∗a← b {a, b} ∅
goto l′ ∅ ∅
if a > b goto l′ {a, b} ∅
l′ : ∅ ∅
x← f(p1, . . . , pn) V ars({p1, . . . , pn}) {x}

5 Backward Must Dataflow Analysis

Very busy expressions is an example of a backward must analysis (Figure 4),
i.e., which expressions will be used on every path before any of its vari-
ables is redefined. Very busy expressions are needed for partial redundancy
elimination (PRE) and can be useful for determining which variable to keep
in a register instead of spilling. Variables that are used again on every path
may be more useful to keep in a register than those that are only used on
one path. See Table 4.

6 What These Dataflow Analyses Have in Common

Even though all of them are different, the forward/backward may/must
dataflow analysis are nevertheless very similar. They all follow a general
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Figure 4: Dataflow analysis schema for backward must analysis

Table 4: Backward must analysis definitions for very busy expressions

Statement l gen(l) kill(l)

final A•(final) = ∅
x← a� b {a� b} {e : e contains x}
x← ∗a {∗a} {e : e contains x}
∗a← b {b} {e : e contains ∗z for any z}
goto l′ ∅ ∅
if a > b goto l′ {a, b} ∅
l′ : ∅ ∅
x← f(p1, . . . , pn) ∅ {e : e contains x or any ∗z}

pattern:

A◦(`) =

{
ι if ` ∈ E⊔{A•(`′) : (`′, `) ∈ F} otherwise

A•(`) = f`(A◦(`))

where, depending on the specific analysis:

• the operator
⊔

is either
⋃

for information from any source or
⋂

for
information joint to all sources

• the flow relation F is either the forward control flow or the backward
control flow

• the initialization setE is either the initial block or the set of final nodes

• ι specifies the starting point of the analysis at the initial or final nodes
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• f` is the transfer function for the node, which, in the previous exam-
ples is always of the special form

f`(X) = (X \ kill(`)) ∪ gen(`)

More formally, the property that we are analyzing is part of a property
space L. This space L could be the set of all sets of variables ℘(V ars), if we
are looking for the set of all live variables. Or, for available expressions,
it could be the set of all sets of expressions ℘(Expr) ordered by ⊇. Or,
in fairly advanced analyses, we might even be tempted to try the set of
all mappings V ars → Z2 from variables to intervals, if we are trying to
find interval bounds for each variable. The latter scenario is more difficult,
though.

For the property space and the way how property values flow through
the control flow, we need a number of assumptions. We will investigate
those assumptions and the general principle behind dataflow analysis in
the next lecture.
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